Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые изучили температурные изменения свойств необычных материалов — ауксетиков
Свойства ауксетиков — материалов, имеющих отрицательные значения коэффициента Пуассона — могут меняться не только при механическом воздействии, но и при изменении температуры. Ученые Пермского Политеха выяснили, как такие материалы реагируют на изменение температуры. Это поможет проектировать 3D-изделия с подходящими характеристиками для разных режимов эксплуатации.
Во многих отраслях промышленности, в том числе автомобильной, аэрокосмической, строительной, биомедицинской все чаще применяют ауксетики. Благодаря своей уникальной структуре они нетипично реагируют на внешние воздействия. Например, если надавить на пластилин, он расплющивается, то есть растягивается горизонтально, а в случае с ауксетиками наоборот: при вертикальном нагружении они сжимаются, то есть становятся тоньше, сужаясь по сторонам.
Такое поведение делает их очень интересными и полезными материалами для решения многих актуальных проблем, в частности, для создания адаптивных протезов, способных «расти» и изменяться вместе с пациентом, проектирования стентов коронарных сосудов, ортопедических имплантатов, которые могут адаптироваться под индивидуальные особенности пациентов.
Особые свойства ауксетиков достигаются благодаря тому, что они состоят из специально спроектированных ячеек, которые образуют решетчатую структуру, похожую на пчелиные соты. Для каждого конкретного применения подбирают индивидуальную комбинацию такой решетки, что делает эти материалы универсальными. При расширении или сжатии структуры ячейки перемещаются, тем самым изменяя размер всей конструкции.
Ячейки ауксетиков могут состоять из чего угодно — металла, полимера, пластика. Однако у каждого из этих материалов есть свой коэффициент термического расширения – способность увеличиваться или уменьшаться в результате нагрева или охлаждения. Чтобы успешно применять такие конструкции в производстве, нужна подробная информация о том, как этот коэффициент влияет на изменение всей ячеистой структуры.
Ученые Пермского Политеха выявили зависимость поведения ауксетиков от коэффициента термического расширения. Для отслеживания свойств такого материала создали компьютерную модель его ячеек, объединенных в цилиндр, и повернутых перпендикулярно оси. Такая форма размещения наименее изучена на сегодняшний день и даст расширенное представление о поведении структуры в нетипичном положении. В программу вбивали разные показатели коэффициента и смотрели, как менялись свойства ауксетиков при повышенной температуре и двух вариантах механической нагрузки: при давлении изнутри и снаружи.
– В результате исследования мы изучили, как ауксетики ведут себя под нагрузкой в зависимости от температуры. Мы выяснили, что ауксетичные цилиндры, изготовленные из материалов с более низким коэффициентом термического расширения, при воздействии внешнего давления и температуры будут сжиматься, а с более высоким – расширяться. Благодаря этому мы видим, как одна и та же структура принципиально меняет свое поведение – от сжатия к расширению, в зависимости от материалов из которых она изготовлена, – комментирует Анастасия Тарасова, аспирант, младший научный сотрудник научно-исследовательской лаборатории «Механика биосовместимых материалов и устройств» ПНИПУ.
– Результаты исследований способствуют созданию умных материалов, которые могут подстраиваться к внешним условиям, улучшая эффективность и долговечность изделий. Ауксетики могут быть использованы для компенсации температурных деформаций и снижения термических напряжений. Подобная адаптивность к температурным воздействиям востребована, например, в аэрокосмических, строительных и медицинских приложениях, – комментирует Михаил Ташкинов, доцент кафедры «Динамика и прочность машин», заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ.
Такие структуры помогают уменьшить изменения формы и размера материалов при сильных колебаниях температуры. Это особенно важно, в том числе, и для обеспечения целостности и функциональности космических кораблей, которые подвержены экстремальным перепадам температурам.
Исследование ученых ПНИПУ пополняет базу данных о термомеханическом поведении ауксетичных структур, чтобы использовать их в качестве перспективных материалов для инженерных применений, где нужно контролировать реакцию на разные факторы, особенно в конструкциях, подверженных экстремальным механическим и термическим воздействиям.
Статья опубликована в журнале «Вестник ПНИПУ. Механика». Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет 2030».
Ежедневно, еще до восхода солнца, миллионы птиц по всей планете наполняют воздух своими голосами. Этот рассветный концерт — одно из самых красивых и загадочных явлений природы. Почему пернатые певцы предпочитают встречать день именно так? Авторы нового исследования предложили простой ответ: птицы не могут иначе. Ночь заставляет их молчать, а утро дает долгожданную свободу, выплескивающуюся в бурном и страстном хоре.
Один и тот же фитнес-браслет считает шаги и калории одинаково у мужчин и женщин, но внутренний отклик организма на физическую нагрузку различается. Это выяснили авторы нового исследования. Ученые пришли к выводу: чтобы добиться такого же результата в снижении риска сердечно-сосудистых заболеваний, мужчинам от 50 лет нужно заниматься в спортзале более чем в два раза усерднее женщин. Результаты этой работы могут привести к пересмотру универсальных рекомендаций по физической активности.
Анализ астрономических фотопластинок середины XX века показал, что таинственные яркие точки на небе появлялись значительно чаще вблизи дат ядерных испытаний. Эти вспышки, зафиксированные еще до запуска первого спутника, также совпали с увеличением числа сообщений о неопознанных аномальных явлениях.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Исследователи объяснили, как цивилизация майя добивалась высокой точности в предсказании солнечных затмений на протяжении столетий. Для коррекции накапливающихся астрономических неточностей они использовали сложную систему пересекающихся календарных таблиц.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно