Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Квантовый демон Максвелла «телепортирует» энтропию из кубита
Физики описали пространственно-разнесенного квантового демона Максвелла. Устройство может найти применение в квантовых компьютерах и микроскопических холодильниках точечного действия.
Ученые из Московского физико-технического института с коллегами из США и Швейцарии описали пространственно-разнесенного квантового демона Максвелла — устройство, локально нарушающее второй закон термодинамики в системе, которая находится на расстоянии одного-пяти метров от демона.
Устройство может найти применение в квантовых компьютерах и микроскопических холодильниках точечного действия. Исследование опубликовано в журнале Physical Review B.
Второй закон утверждает, что энтропия, то есть неупорядоченность, энергетически изолированной системы не может самопроизвольно уменьшаться.
«Наш демон делает так, что устройство, которое называется кубитом, переходит из менее упорядоченного состояния в более упорядоченное, — поясняет ведущий автор исследования Андрей Лебедев, сотрудник МФТИ и Федеральной высшей технической школы Цюриха. — При этом кубит не изменяет свою энергию и находится от демона на огромном, по меркам квантовой физики, расстоянии».
До сих пор авторы исследования и другие физики описывали и конструировали только квантовых демонов Максвелла с очень малым радиусом действия. Поскольку демона необходимо особым образом подготовить перед каждым взаимодействием с кубитом, а на это уходит энергия, глобально второй закон не нарушается.
Демон-очиститель
Роль кубита в исследовании выполняет сверхпроводящий искусственный атом —микроскопическое устройство, из которого ранее тот же коллектив предложил сделать квантовый магнитометр. Такой кубит состоит из тонких пленок алюминия, нанесенных на кремниевый чип.
Эта система называется искусственным атомом, потому что при температуре, близкой к абсолютному нулю, она ведет себя как атом с двумя энергетическими уровнями —основным и возбужденным.
Для кубита характерны «грязные» (смешанные) и «чистые» состояния. Если он пребывает или в основном, или в возбужденном состоянии, но не известно, в каком именно, то говорят о грязном. В таком состоянии можно говорить о классической вероятности найти искусственный атом на одном из своих уровней.
Но как и настоящий атом, кубит может находиться в квантовой суперпозиции основного и возбужденного состояния. Так в квантовой физике описывают особое состояние, которое не тождественно ни одному из двух базисных.
Такое состояние называют чистым, его нельзя описать только в терминах классической вероятности. Оно считается более упорядоченным, но может существовать лишь доли секунды, прежде чем переходит в грязное.
Роль демона выполняет второй такой же кубит. Он присоединяется к рабочему кубиту коаксиальным кабелем, который проводит микроволновые сигналы. Согласно принципу неопределенности Гейзенберга, оказавшись связанными, кубиты начинают самопроизвольно обмениваться виртуальными фотонами — порциями микроволнового излучения. Посредством фотонов кубиты меняются состояниями.
Демон приводится в чистое состояние, затем он обменивается состояниями с рабочим кубитом, отдавая чистое взамен на грязное с такой же энергией. Перейдя в чистое состояние, рабочий кубит снижает свою энтропию, сохранив прежнюю энергию.
Выходит, что демон Максвелла на расстоянии «съедает» энтропию кубита —энергетически изолированной системы. Если смотреть на кубит локально, возникает впечатление, что второй закон нарушен.
Квантовый нанохолодильник
Возможность на расстоянии очищать состояние рабочего кубита ценна с практической точки зрения. В отличие от грязного, чистое состояние кубита можно относительно легко и предсказуемо перевести в основное или в возбужденное при помощи электромагнитного поля.
Эта операция нужна для работы квантового компьютера: при его запуске требуется перевести все кубиты в основное состояние. При этом присутствие демона вблизи кубитов нежелательно, так как процесс его очистки может губительно повлиять на состояние компьютера.
Еще одно применение связано с тем, что перевод рабочего кубита в чистое состояние и затем в основное вызывает охлаждение точки пространства, где находится кубит. Это значит, что кубит работает как нанохолодильник, которым можно точечно охлаждать, например, участки молекул.
«Обычный холодильник воздействует на весь свой объем, а такой кубитный нанохолодильник будет охлаждать конкретную точку. В ряде случаев это может быть эффективнее, — объясняет соавтор исследования, заведующий лабораторией физики квантовых информационных технологий МФТИ Гордей Лесовик. — Например, в том же квантовом компьютере можно было использовать так называемое алгоритмическое охлаждение — в коде основной, „квантовой“ программы написать подпрограмму, которая будет прицельно охлаждать самые горячие кубиты».
«А поскольку любую тепловую машину можно запустить в обратную сторону, мы имеем еще и точечный нагреватель. Чтобы его включить, нужно переводить рабочий кубит из суперпозиции не в основное, а в возбужденное состояние. Тогда там, где находится кубит, станет горячее», — добавляет ученый.
Обе операции можно проводить многократно, потому что чистое состояние кубита живет доли секунды, после чего оно снова переходит в грязное, поглощая или излучая энергию в случае с холодильником и нагревателем соответственно. На каждом шаге точка нахождения кубита будет остывать или нагреваться сильнее.
Кроме радиуса действия демона, авторы статьи дают оценку максимальной температуры коаксиального кабеля между двумя кубитами, при которой вся система сохраняет свои квантовые свойства, без чего действие демона невозможно.
Хотя эта температура крайне низка (считаные градусы выше абсолютного нуля), она все же выше рабочей температуры кубитов примерно в 100 раз, что существенно облегчает реализацию предложенной схемы на практике.
Авторы уже работают над постановкой описанного в статье эксперимента.
Исследование профинансировано Швейцарским национальным научным фондом, Министерством энергетики США, Российским фондом фундаментальных исследований, Фондом развития теоретической физики и математики «БАЗИС», Министерством образования и науки России и правительством России.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.
Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Термояд начнет вырабатывать электричество через 20 лет — так говорили с 1950-х, но этого все так и не происходит. Почему? В чем принципиальные сложности на этом пути? Чего добивается «Росатом» в проекте ИТЭР и почему параллельно уже начал работу по российскому термоядерному реактору ТРТ? Руководитель проектного офиса по управляемому термоядерному синтезу «Наука и инновации» госкорпорации «Росатом» Андрей Аникеев ответил на наши вопросы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
