Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект оценил техническое состояние производственных сооружений
Сегодня в российском строительном секторе наблюдается нехватка кадров, достигающая 10-25 процентов. Появляется все больше молодых специалистов, у которых недостаточно опыта для достоверного установления состояния сооружений. Статистика аварий строительных конструкций демонстрирует, что ошибочная оценка — одна из основных причин разрушения материалов помимо естественного износа. Ученые Пермского Политеха разработали программу, которая автоматически определяет техническое состояние сооружения с помощью искусственного интеллекта. Это позволит проводить своевременный ремонт и тем самым снизить риски аварий и катастроф.
Статья опубликована в журнале «Вестник ПТО РААСН». Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».
Важную роль в металлургической, химической, угольной, горнорудной, энергетической и других отраслях промышленности играют здания перегрузочных узлов сыпучих материалов (например, угля, шихты, руды) с одного конвейера на другой. Это один из наиболее распространенных видов транспортных коммуникаций на большинстве современных заводов. На территории одного производства их может быть от одного до 40 и более. Разрушение такой конструкции создает опасность и увеличивает риск несчастных случаев, остановки производства.
Обследование и мониторинг технического состояния и своевременный ремонт таких объектов позволяет избежать тяжелых последствий, но экспертная оценка субъективна. Человеку не всегда удается точно определить, к какой категории относится конструкция: в норме, требует замены элементов или нуждается в тотальном восстановлении. Для грамотного рассмотрения проблем специалист должен обладать многолетним опытом и знаниями, и чтобы стать экспертом, требуется не один год практической деятельности.
Ученые Пермского Политеха разработали программу для определения технического состояния и назначения ремонтных мероприятий для зданий перегрузочных узлов, используя технологию искусственного интеллекта – нейросетевую модель. Для ее обучения использовали материалы технических отчетов за 1997 – 2024 годы.
На данном этапе разработан алгоритм обучения полносвязной нейронной сети с двумя скрытыми слоями, но пока без пользовательского интерфейса.
«В выборку для обучения нейросети вошли колонны, вертикальные и горизонтальные связи, главные и второстепенные балки перекрытий и покрытия, данные о монолитных плитах и так далее. В качестве входных данных учитывались все параметры, встречающиеся при обследовании перегрузочных узлов: уровень коррозии материала, состояние защитного покрытия, узлов, данные расчетов, нарушения целостности. В зависимости от их сочетания друг с другом ИИ определяет, к какой категории следует отнести конструкцию и требуется ли ей ремонт», – рассказывает Виталий Платунов, аспирант кафедры «Строительные конструкции и вычислительная механика» ПНИПУ.
«В ходе экспериментов модель показала до 95 процентов точности и уже может применяться в строительстве. В дальнейшем мы планируем проверить ее на большем количестве данных и доработать в полноценного бота в Telegram. Там молодым специалистам будет гораздо удобнее и проще работать с программой», – комментирует Галина Кашеварова, профессор кафедры «Строительные конструкции и вычислительная механика» ПНИПУ, доктор технических наук.
Разработка ученых Пермского Политеха позволит применять автоматизированные решения в области экспертных оценок, повысить качество обследований и, как следствие, обеспечить надежную и безопасную эксплуатацию зданий перегрузочных узлов.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Вопрос о том, можно ли считать чрезмерное увлечение физическими упражнениями аддиктивным поведением, остается дискуссионным. Ученые из Италии и Испании выяснили, что сильнее всего к такому компульсивному поведению склонны люди с чертами перфекционизма.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
Ученые десятилетиями ищут кости мамонтов, которые, по данным генетиков, могли дожить на материке до бронзового века. Очередная потенциальная находка с Аляски, считавшаяся остатками мамонтов, после проверки оказалась костями китов, умерших около двух тысяч лет назад.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно