Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики рассказали, как управлять вихрями в двумерной турбулентности
Как поведение турбулентных потоков меняется под действием внешнего воздействия, выяснили исследователи Института теоретической физики имени Л.Д. Ландау РАН и факультета физики НИУ ВШЭ. Они показали, что даже небольшое подкручивание извне может стабилизировать систему, продлевая жизнь крупных вихрей. Такие результаты помогут точнее моделировать атмосферные и океанические потоки.
Турбулентность — кажущееся беспорядочным движение воды и воздуха, которое возникает, когда потоки вещества начинают двигаться с очень высокой скоростью. В состоянии турбулентности потоки жидкости постоянно перемешиваются, ломаются, вихри распадаются на маленькие, иногда исчезают или, наоборот, собираются в крупные.
Хотя ученые знают условия возникновения турбулентных потоков, для описания их поведения и эволюции приходится использовать сложные математические модели со множеством параметров. Чтобы понять поведение реальных систем, например атмосферы и океанов Земли, исследователи моделируют динамику турбулентности в упрощенном виде — изучают ее на плоскости вместо объема.
Законы турбулентности в трехмерных и двумерных системах кардинально различаются. В трехмерных турбулентных системах энергия движется по прямому каскаду: большие потоки склонны распадаться на маленькие, энергия которых после выделяется в виде тепла. В плоских системах турбулентность проявляется иначе. Двумерная конфигурация заставляет энергию перемещаться по обратному каскаду: мелкие вихри стремятся объединяться в крупные.
Научный сотрудник ИТФ имени Л.Д. Ландау РАН и Международной лаборатории физики конденсированного состояния НИУ ВШЭ Владимир Парфеньев и студентка магистратуры факультета физики НИУ ВШЭ Алиса Шиканиан смоделировали поведение турбулентных вихрей на плоскости. Они изучили динамику жидкости в квадратной ячейке. Работа опубликована в журнале Physics of Fluids.
Ученые рассмотрели случай, в котором к двумерной системе прикладывают постоянный внешний крутящий момент, как будто потоки дополнительно закручивают извне. Оказалось, что добавление совсем небольшого внешнего подкручивания способно увеличить время жизни крупных вихрей и стабилизировать поведение системы.
Математическое моделирование позволило определить, как толщина пограничного слоя у стенок, где происходит рассеяние энергии, зависит от параметров изучаемой системы. Скорость жидкости у границ в проведенном моделировании вела себя так же, как в лабораторных экспериментах с мыльными пленками других исследовательских групп: увеличивалась при удалении от стенок по закономерностям одного типа. При этом в системе образовывались крупные вихри, обратный каскад энергии не останавливался и доходил до размеров системы.
«Самый важный для нас результат — точное понимание того факта, что трения жидкости только о стенки недостаточно для остановки обратного каскада энергии в двумерной системе, вихри жидкости всегда будут стремиться собраться в крупные структуры. Так или иначе энергия в системе накапливается на крупных масштабах — именно так из хаоса образуется порядок», — рассказал Владимир Парфеньев.
Полученные учеными результаты расширяют понимание процессов, управляющих формированием крупномасштабных структур в двумерной турбулентности, и создают прочный фундамент для будущих исследований в этой области. Занимающиеся науками о Земле ученые смогут использовать результаты работы для уточнения прогностических моделей океанических и атмосферных течений.
По замыслу исследователей, в будущем нетрадиционный способ доставки кислорода в организм, который они называют «энтеральной вентиляцией», может стать спасением для пациентов с дыхательной недостаточностью. Эксперимент подтвердил безопасность процедуры для людей, что приближает ученых к реализации идеи.
Насколько счастливым нужно быть человеку, чтобы это начало благоприятно сказываться на продолжительности жизни? Ученые определили минимальный уровень субъективного ощущения благополучия, или счастья, преодолев который, оно становится фактором, позитивно влияющим на здоровье населения страны.
В далеких холодных просторах Солнечной системы, между орбитами Сатурна и Урана, разворачивается редкое космическое представление. Таинственный объект под названием Хирон меняет свой облик. Астрономы фиксируют уникальный процесс — активную эволюцию его колец. Ничего подобного в таком масштабе ученые не наблюдали ранее.
В густой оранжевой дымке Титана, где температура опускается до минус 180 градусов Цельсия, происходят невозможные по земным меркам химические реакции: молекула циановодорода (HCN), рожденная в атмосфере из азота, метана и этана, могла сформировать кристаллы, объединяющие вещества противоположной природы.
Первый официальный документ, описывающий принцип действий в случае возможного контакта с внеземной цивилизацией, был принят Международной академией астронавтики (IAA) в 1989 году. С тех пор декларацию неоднократно пересматривали, а ее обновленную версию, адаптированную под реалии XXI века, ученые разработали совместно с участниками проекта по поиску инопланетян SETI.
Насколько счастливым нужно быть человеку, чтобы это начало благоприятно сказываться на продолжительности жизни? Ученые определили минимальный уровень субъективного ощущения благополучия, или счастья, преодолев который, оно становится фактором, позитивно влияющим на здоровье населения страны.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии