• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
14 апреля, 11:08
МТУСИ
115

Искусственный интеллект научился находить дефекты ткани быстрее человека

❋ 4.4

В современном текстильном производстве контроль качества продукции занимает центральное место, поскольку такие дефекты, как несовпадение рисунка, распущенные нити и отклонения в цвете могут значительно сказаться на характеристиках конечного изделия. Ученые МТУСИ предложили метод формирования признаков текстурированного изображения, который можно применить для построения математической модели текстильного материала при решении задач автоматизации процесса разбраковки.

Искусственный интеллект научился находить дефекты ткани быстрее человека – иллюстрация к материалу на Naked Science
Текстильное производство / © BANANATEX, en.wikipedia.org

До недавнего времени большинство операций по контролю качества тканей осуществлялось вручную, что позволяло выявить лишь около 70% возможных дефектов. Современные технологии предлагают новые решения — автоматизированные системы контроля качества на основе компьютерного зрения — которые уже находят применение в текстильной, деревообрабатывающей и химической промышленностях.

Система автоматического контроля качества (САКК) состоит из сканера, системы распознавания и модуля принятия решений. Одной из важных задач таких систем является определение изменения структурных свойств материалов   на этапе выявления брака. Для проверки качества однотонных тканей, равно как и для выявления характерных особенностей их структуры, применяют различные методы контроля, например, оптические методы.

Однако, существующие алгоритмы распознавания часто не позволяют обнаруживать дефекты материалов в режиме реального времени, особенно если их количество увеличивается. Отмечается, что один из путей повышения эффективности таких систем распознавания – это создание методик предварительного анализа текстурированной геометрической пространственной модели (ткани) и усовершенствование алгоритмов обнаружения дефектов тканей в системах с эталонными моделями.

Ученые МТУСИ предложили метод формирования признаков текстурированного изображения, который может быть применен для построения математической модели текстильного материала (ткани) при решении задач автоматизации процесса разбраковки.

Новшество такого метода — создание эталонов — образцов, с которыми сравниваются изображения тканей для выявления дефектов.

«Анализ качества ткани относительно эталонного состояния позволяет выделять существенные особенности структуры ткани вплоть до анализа состояния единичных переплетений, — отмечает профессор, доктор технических наук Сергей Рожков. — При этом в данной постановке задачи ткань, как объект контроля, целесообразно рассматривать как двумерный периодический объект».

В исследовании интересным инструментом стало применение пространственной автокорреляционной функции, которая помогла ученым проанализировать структурные элементы ткани.

«Разработка модели проводилась в среде MATLAB. При выделении контуров изображения были выявлены особенности периодичности структуры ткани, а наличие корреляционного максимума позволило определить основные частоты структуры, — рассказал о ходе исследования кандидат технических наук, доцент Вячеслав Воронов. — Для улучшения качества изображений применялись методы предварительной обработки изображений: коррекция яркости, устранение шумов и преобразование изображения для более детального анализа. При этом коррекция шкалы яркости позволила устранить систематические искажения исходного изображения аддитивного или мультипликативного характера».

В процессе исследования ученые обратили внимание на то, что корреляция не только усиливает основные частоты, но и выявляет скрытые периодичности в структуре ткани, что значительно усложняет задачу определения основных параметров структуры модели.  В свою очередь, применение в свертке гармоник, связанных с неравномерностью структуры ткани, позволило выделить скрытую периодичность по направлению основы ткани и выделить перекос, который имел место в образце ткани. Для определения основных частот модели ткани ученые использовали энергетический спектр изображения, с помощью которого была построена эталонная моногармоническая модель ткани.

Полученные в работе результаты охватывают только один из возможных подходов при контроле качества текстильных материалов. Дальнейшие исследования перспективны, с точки зрения создания систем контроля, для всего спектра дефектов текстильных материалов (тканей), в том числе с возможностью прогнозирования их характеристик.

В дальнейшем предполагается создание систем контроля качества, способных прогнозировать и детально анализировать дефекты текстильных материалов в процессе их производства. Совершенствование средств автоматизации контроля качества текстильных материалов позволяет не только повысить эффективность производства, но и улучшить качество текстильной продукции, удовлетворяя высокие стандарты отрасли. Материал опубликован в Сборнике трудов XVIII Международной отраслевой научно-технической конференции «Технологии информационного общества».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский технический университет связи и информатики (МТУСИ) — ведущее отраслевое техническое высшее учебное заведение Центральной России по подготовке кадров для IT и телеком-индустрии, подведомственное Министерству цифрового развития, связи и массовых коммуникаций РФ. Основан в 1921 году на базе Московского электротехнического института народной связи им. В.Н. Подбельского. Ежегодно МТУСИ выпускает востребованных специалистов в области связи, информационных технологий, квантовых коммуникаций, робототехники, информационной безопасности и цифровой экономики. В состав университета входят 5 факультетов, 34 кафедры, 2 филиала (Волго-Вятский и Северо-Кавказский), Колледж телекоммуникаций, Музей электросвязи, Квантовый центр, Центр робототехники, Лаборатория AR/VR, Центры заочного обучения бакалавров и магистров, Центр индивидуального обучения.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
30 декабря, 12:18
Илья Гриднев

Компьютерное моделирование показало, что комета из китайских хроник 5 года до нашей эры могла визуально зависнуть над Иудеей благодаря синхронизации с вращением Земли. Это дает физическое объяснение библейскому описанию остановившейся звезды, хотя отсутствие упоминаний о таком ярком объекте в римских летописях ставит гипотезу под сомнение.

28 декабря, 16:21
Александр Березин

В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.

29 декабря, 14:48
Андрей Серегин

Южная Америка в доколониальный период была ареной многочисленных локальных конфликтов за ресурсы. Ученые из Аргентины выяснили подробности сложного и трудоемкого производства стрел в этом регионе.

26 декабря, 15:47
Максим Абдулаев

Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.

27 декабря, 17:46
Адель Романова

После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.

28 декабря, 16:21
Александр Березин

В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно