Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские астрофизики обнаружили нейтронную звезду с необычной структурой магнитного поля
Ученые из МФТИ совместно с коллегами обнаружили систему с необычной нейтронной звездой, чье магнитное поле регистрируется только в тот момент, когда звезда поворачивается к наблюдателю определенным образом.
Астрофизики из Института космических исследований РАН, МФТИ и Пулковской обсерватории РАН обнаружили систему с необычной нейтронной звездой, чье магнитное поле регистрируется только в тот момент, когда звезда поворачивается к наблюдателю определенным образом.
До этого открытия были известны два типа систем: в одних магнитное поле регистрируется в излучении от звезды постоянно, а в других — не регистрируется вовсе. Объект, исследованный учеными, приоткрывает «окно» к внутреннему строению магнитного поля нейтронной звезды только на определенной фазе вращения. Результаты работы опубликованы в журнале The Astrophysical Journal Letters.
Нейтронная звезда в системе GRO J2058+42 была открыта почти четверть века назад американской обсерваторией Compton Gamma-Ray Observatory (CGRO) и принадлежит к особому классу — вспыхивающим (или транзиентным) рентгеновским пульсарам. С тех пор этот объект неоднократно наблюдался разными инструментами и на фоне своих «одноклассников» ничем особенным не выделялся. И только недавние наблюдения с помощью американской космической обсерватории NuSTAR, обладающей выдающейся комбинацией высокого энергетического разрешения (<400 эВ) и широчайшего рабочего диапазона энергий (3–79 кэВ), позволили «рассмотреть» особенности излучения этого пульсара, дающие возможность утверждать, что он претендует стать родоначальником нового семейства объектов.
В энергетических спектрах (энергетический спектр — зависимость интенсивности излучения объекта от энергии испускаемых фотонов) источника была обнаружена линия циклотронного поглощения (циклотронная частота — частота обращения заряженной частицы — в данном случае электрона — в магнитном поле; в зависимости от внешних условий на этой частоте может наблюдаться либо избыток излучения, либо избыток поглощения. Именно последнее и регистрируется в спектрах рентгеновских пульсаров, позволяя напрямую измерять их магнитные поля), дающая возможность однозначно определить напряженность магнитного поля в месте ее образования.
Само по себе это не ново, и такие особенности сегодня известны у трех десятков объектов. Уникальность сделанного российскими учеными открытия состоит в том, что спектральная особенность проявляет себя только тогда, когда нейтронная звезда повернута к наблюдателю определенным образом.
Открыть данное явление ученым удалось, проведя детальные «томографические» исследования системы. Для этого были сделаны рентгеновские снимки «космического пациента» с десяти ракурсов, и только на одном из них был обнаружен дефицит излучения на энергии около 10 кэВ, что соответствует напряженности магнитного поля 1012 Гаусс. Особый интерес полученному результату давала одновременная регистрация высших гармоник циклотронной линии на той же самой фазе излучения источника (рисунок 1).
Рисунок 1. Рентгеновская «томография» пульсара GROJ2058+42. Художественное изображение аккрецирующего рентгеновского пульсара, на котором показан один из полюсов нейтронной звезды с формирующимся рентгеновским излучением (Credit: NASA/CXC/S. Lee). Стрелками показаны разные направления испускаемого сигнала и наблюдаемые спектры излучения от системы / ©The Astrophysical Journal Letters / Пресс-служба МФТИ
Нейтронные звезды — сверхплотные космические тела, имеющие радиус около 10 километров и массу, достигающую значений в 1,4–2,5 массы Солнца. Рождаются нейтронные звезды в результате вспышек сверхновых звезд, когда вещество из-за гравитации сжимается настолько сильно, что электроны фактически сливаются с протонами, и образуют нейтроны. Отсюда и получаются такие огромные массы при столь скромных размерах.
Более того, при сжатии также сохраняется магнитный поток, и если величина магнитного поля на поверхности звезды-прародителя была порядка 1 Гс (как, например, на Земле), то после коллапса магнитное поле на поверхности нейтронной звезды достигает величин 1011–1012 Гс (что превышает величину максимально достижимого в земных лабораториях магнитного поля в десятки миллионов раз). В большинстве случаев конфигурация магнитного поля нейтронной звезды соответствует диполю, то есть существуют два полюса (как и в случае Земли, где есть северный и южный магнитные полюса).
Некоторые нейтронные звезды могут образовывать пару с обычной звездой, вещество которой перетекает на поверхность нейтронной звезды в области магнитных полюсов (если возвращаться к аналогии с Землей, то частицы солнечного ветра «выпадают» в районе магнитных полюсов, образуя всем известное явление полярного сияния). Если ось вращения нейтронной звезды не совпадает с ее магнитной осью, то сторонний наблюдатель будет видеть периодический сигнал, как от маяка — рентгеновский пульсар. Излучение рентгеновского пульсара GRO J2058+42 не является постоянным и регистрируется только во время вспышек.
Такое поведение обусловлено присутствием рядом с ним необычной звезды-компаньона, принадлежащей классу Ве-звезд. Звезды этого класса настолько быстро вращаются вокруг своей оси, что в плоскости их экватора может образовываться газовый диск из оттекающего вещества. При прохождении нейтронной звезды через этот диск вещество начинает «перетекать» на ее поверхность, что ведет к резкому возрастанию светимости. Именно моменты таких вспышек являются идеальными для исследования физических свойств системы.
Сложность проведенных исследований заключается в том, что вспышки в большинстве из таких систем происходят довольно редко, и их невозможно достоверно прогнозировать. Поэтому, когда случаются такие события, необходимо оперативно организовать наблюдения на космических обсерваториях. Российские ученые смогли «поймать» момент зарождения новой вспышки от GRO J2058+42 и оперативно организовать серию наблюдений космической обсерваторией NuSTAR. По результатам этих наблюдений было обнаружено, что магнитное поле проявляет себя только на определенных фазах вращения, что может свидетельствовать о его необычной конфигурации или же об особенностях геометрии системы в целом.
Полученный результат был настолько необычен, что российские ученые обратились к американским коллегам с предложением провести дополнительные наблюдения, которые подтвердили первоначальные выводы. Неоднородности в структуре магнитного поля как обычных, так и нейтронных звезд были предсказаны на основе детальных численных расчетов (рисунок 2).
Рисунок 2. Пример структуры магнитного поля нейтронной звезды с сильным магнитным полем (магнетара) в спокойном состоянии (вверху) и при переходе в нестабильное состояние (внизу) / ©K.Gourgouliatos et al / Пресс-служба МФТИ
До недавнего времени считалось, что такие неоднородности формируются только во время кратковременных вспышек на звездах или от магнетаров. Открытие российских ученых впервые представило доказательства того, что магнитное поле нейтронной звезды имеет существенно более сложную структуру, чем считалось ранее, и эта структура может сохранять свою форму достаточно продолжительное время, являясь одним из фундаментальных свойств того или иного объекта.
Александр Лутовинов, профессор РАН, заместитель директора по научной работе Института космических исследований РАН, преподаватель МФТИ и один из авторов открытия, поясняет: «Одним из фундаментальных вопросов образования и эволюции нейтронных звезд является структура их магнитных полей. С одной стороны, в процессе коллапса должна сохраняться дипольная структура звезды-прародительницы, с другой, мы знаем, что даже у нашего Солнца есть локальные неоднородности магнитного поля, что, например, проявляется в солнечных пятнах.
Похожие структуры предсказываются теоретически и в случае нейтронных звезд. Это очень здорово — впервые увидеть их в реальных данных. Теоретики теперь получат новые фактические данные для моделирований, а мы — еще один инструмент для исследования параметров нейтронных звезд».
Работа была поддержана Российским научным фондом.
Новое исследование показало, что реакция псов на объекты и звуки с ТВ-экранов варьируется в зависимости от характера и психологических особенностей питомцев. По мнению специалистов, знание этих деталей может пригодиться при разработке коррекционных программ для собак с проблемным поведением.
Полтора десятка лет назад студент из Непала открыл на снимках NASA потоки жидкой воды на четвертой планете. Большинство ученых отреагировало на это с серьезным скепсисом. Одна за одной выходили работы о том, что этого не может быть, ведь давление и температура там слишком низки. Но в новом исследовании показано, почему на самом деле жидкая вода возможна даже в марсианских условиях, то есть открытие потоков там вполне реально.
Не секрет, что занятия спортом под музыку приятнее и помогают повысить продуктивность тренировок. В новом исследовании итальянские ученые на примере силовых упражнений показали, какая именно музыка лучше подходит для таких целей.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
В условиях отсутствия связи (шахты, горы, тайга) критически важна надежная передача данных. Ученые Пермского Политеха разработали цифровую радиостанцию, устойчивую к помехам и физическим препятствиям, включая бетонные стены. Устройство передает данные в двух сетях MANET одновременно, обеспечивая скорость до 300 кбит/с (низкоскоростной канал) и 54 Мбит/с (высокоскоростной). Рация работает как ретранслятор и узел сети, что делает ее незаменимой для спасателей, промышленности и туристов. Ключевые преимущества разработки: помехоустойчивость, дальность связи до 30 километров и работа при -25°C до +55 градусов Цельсия.
В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии