Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#кубит
Ученые Йельского университета и Национальной лаборатории Брукхейвена повысили время работы сверхпроводящих квантовых устройств за счет нового подхода к дизайну микросхем и выбору материалов. Новая парадигма позволила увеличить время когерентности кубитов до одной миллисекунды. Результаты опубликованы в журнале Nature communications.
С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики совместно с учеными МГУ и Российского квантового центра (Москва) разработали новый метод для управления квантовыми объектами — кубитами, альтернативой квантовым разработкам Google и IBM. Это позволяет решить проблему санкционных закупок СВЧ-электроники, необходимой для проведения квантовых вычислений на сверхпроводниках. При этом повышаются скорость и точность операций.
Исследователи Центра квантовых метаматериалов МИЭМ НИУ ВШЭ совместно с коллегами из Германии и Великобритании предложили алгоритм автоматического сжатия произвольных сред (Automated Compression of Arbitrary Environments — ACE). Он дает качественно новые возможности точных вычислений для исследования динамики квантовых систем. По мнению ученых, новый метод поможет в проектировании квантовых компьютеров и новых систем связи.
За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы). Несмотря на такой впечатляющий прогресс, полноценный квантовый компьютер, на котором можно было бы запустить произвольный квантовый алгоритм, так и не был создан. Почему это по-прежнему очень сложная инженерная задача, сравнимая с высадкой человека на Луну, и как ее решают по всему миру (в том числе, и в России), Naked Science расскажет в этой третьей по счету статье нашего «квантового цикла».
Группа ученых из России и Великобритании впервые представила теоретическое описание эффекта квантового волнового смешения, в котором присутствуют как классические, так и неклассические состояния микроволнового излучения. Этот эффект, который до сих пор не имел строгого математического описания, может быть использован при исследовании взаимодействий между светом и материей в квантовых вычислениях и фундаментальной физике.
Физики из МФТИ и компании Terra Quantum вместе с коллегами из США и Швейцарии разработали алгоритм, который позволяет проводить высокоточные измерения с помощью искусственных многоуровневых атомов. Такой квантовый сенсор позволяет получить высокую точность при измерении магнитных полей. Он также найдет применение при исследовании мозга и в изучении дальнего космоса.
- 1
- 2
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии