• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
10.04.2017
Редакция Naked Science
396

Нейросеть различила шесть классов снежинок

Швейцарские ученые разработали компьютерный алгоритм, который способен автоматически распознавать шесть классов твердых атмосферных осадков с точностью до 95 процентов.

giphy
©Wikipedia / Автор: Наталья Федосеева

Понимание микрофизики гидрометеоров важно для оценки атмосферных осадков, в частности их количества. Сейчас такая оценка проводится путем дистанционного зондирования Земли, например с помощью космических спутников, и математического моделирования — численного прогноза погоды (NWP). При этом точность методов зависит от полноты данных о микроструктуре дождевых капель или снежинок — морфологии, размера, массы, агрегатного состояния, — их сбором занимаются поляриметрические метеорадары или бортовые датчики самолетов. Однако существующие системы, как правило, не позволяют быстро типизировать гидрометеоры и являются дорогими в обслуживании.

 

Более перспективными для анализа метеоданных считаются технологии на основе метода главных компонент (PCA) и искусственных нейросетей. Так, согласно прошлым работам, подобные алгоритмы могут автоматически классифицировать облака с точностью свыше 80 процентов. Получить высококачественные изображения гидрометеоров, в свою очередь, позволяют мультиракурсные камеры для съемки снежинок (Multi-Angle Snowflake Camera, MASC). Эти системы оснащены тремя камерами, расположенными под углом 36 градусов, с разрешением 33 микрометра на пиксель. В ходе съемки MASC делает монохромные стереографические снимки объектов размером 100–100 000 микрометров.

 

Нейросеть различила шесть классов снежинок – иллюстрация к материалу на Naked Science

Классы снежинок / ©Christophe Praz et al., Atmospheric Measurement Techniques, 2017

 

В новой статье исследователи из Федеральной политехнической школы Лозанны и Федерального ведомства по метеорологии и климатологии (MeteoSwiss) описали технологию автоматизации анализа изображений, сделанных с помощью MASC. На первом этапе авторы собрали более двух миллионов снимков снежинок в Альпах и на базе французской научной антарктической станции Дюмон Д’Юрвиль в 2600 километрах от Южного полюса. Затем в полуавтоматическом режиме они оценили текстуру, морфологию и форму гидрометеоров, выявив закономерности: в частности, прямоугольные узоры были характерны для столбчатых кристаллов, тогда как у плоских они имели гексагональную форму, а у крупы — коническую.

 

Поскольку снимки были сделаны наземными камерами и включали в себя не все возможные образцы, ученые упростили десятиклассовую типизацию метеорологов Чожи Магоно (Chōji Magono) и Чунг Ву-Ли (Chung Woo Lee), известную с 1966 года. В результате они получили шесть классов снежинок: малые частицы (SP), столбчатые кристаллы (CC), планарные кристаллы (PC), сочетающие столбчатые и планарные кристаллы (CPC), агрегаты (AG) и крупы (GR). После этого группа создала алгоритм, который обучала методом мультиноминальной логистической регрессии (MLR) на 3712 снимках. Последующие испытания показали, что алгоритм хорошо справляется с распознаванием 94,7 процента снежинок, в том числе подтаявших.

 

По словам авторов, показатель можно увеличить за счет тренировки нейросети на большем количестве данных. Примечательно, что частота выпадения разных классов гидрометеоров оказалась связана с регионом: около половины (49 процентов) снежинок в Альпах исследователи отнесли к агрегатам, меньше — к малым частицам и крупе. В Антарктиде, согласно классификации, преобладают малые частицы (54 процента) и наблюдается меньше агрегатов и крупы. Также любопытно, что «звездные дендриты», часто ассоциирующиеся с «идеальными» снежинками, встречались одинаково редко: для Антарктиды и Альп этот показатель составил пять и десять процентов соответственно.

 

Статья опубликована в журнале Atmospheric Measurement Techniques.

 

Видеосюжет об исследовании / ©EPFL

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

1 июля, 11:00
НИУ ВШЭ

Сверхпроводимость — особое состояние материала, при котором электрический ток проходит через него без потерь энергии. Обычно в материалах с дефектами она возникает при очень низких температурах и в несколько этапов. Международная команда ученых, включая физиков МИЭМ ВШЭ, показала: если дефекты распределены внутри материала не случайно, а по определенной схеме, сверхпроводимость возникает при более высокой температуре и охватывает весь материал. Данные могут помочь в создании сверхпроводников, работающих без экстремального охлаждения.

Вчера, 19:44
Игорь Байдов

Гарум — знаменитый рыбный соус, который был неотъемлемой частью кухни Древнего Рима и других средиземноморских культур. Он стоял на столах и в хижинах бедняков, и в пиршественных залах патрициев. Философ Сенека с отвращением называл его «‎драгоценной сукровицей протухших рыб», но миллионы римлян обожали эту приправу. Что на самом деле входило в ее состав? Ответ на вопрос нашла международная команда ученых с помощью чанов, которые использовались для приготовления соуса.

28 июня, 18:58
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

27 июня, 09:47
Авдей Палиш

Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.

Вчера, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

5 июня, 13:20
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно