• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
08.08.2025, 14:18
ФизТех
130

Закрученные электроны станут основой для новых приборов в фармацевтике и поиске внеземной жизни

❋ 4.6

Ученые из МФТИ и Курчатовского института теоретически предсказали существование новых типов хиральных эффектов, возникающих при взаимодействии света с веществом. Им удалось показать, что если в процессе фотоэффекта выбивать из молекул закрученные фотоэлектроны, то это позволяет наблюдать ранее недоступные проявления асимметрии, или хиральности. В будущем новые методы, основанные на взаимодействии с вихревыми электронами, могут привести к созданию нового поколения приборов для высокоточного анализа хиральных соединений, что найдет применение в фармацевтике для контроля чистоты лекарств, в астрохимии для поиска внеземной жизни.

Рисунок 1. Характеристики фотоэффекта для н-бутана и 2-бутанола. На графиках показана зависимость фотоэффекта от энергии электрона (q). Верхние панели отображают общую вероятность выбивания электрона с пиком при определенной энергии. Нижние панели демонстрируют долю электронов с разной закрученностью (m): m=0 (обычные электроны, красная линия) и m=1,2,3,4 (вихревые электроны, другие цвета). При низких энергиях преобладают обычные электроны, но с ее ростом увеличивается выход вихревых электронов. Для хирального 2-бутанола эффект выражен сильнее / © Kirill V. Bazarov et al., Physics Letters A.

Результаты исследования опубликованы в журнале Physics Letters A. Наш мир полон асимметрии. Подобно тому как левая и правая руки являются зеркальными отражениями друг друга, но не могут быть совмещены в пространстве, многие молекулы в природе существуют в двух «зеркальных» формах, называемых энантиомерами. Это свойство, известное как хиральность, играет ключевую роль в биологии и химии. Например, аминокислоты, из которых состоят белки в живых организмах, существуют почти исключительно в «левой» форме, а сахара — в «правой». В фармацевтике хиральность определяет эффективность и безопасность лекарств: часто один энантиомер является активным веществом, в то время как его зеркальный двойник может быть бесполезен или даже токсичен. Поэтому умение различать энантиомеры и измерять их концентрацию — одна из важнейших задач современной науки.

Одним из самых мощных инструментов для изучения хиральности является фотоэлектронный круговой дихроизм. Суть метода заключается в том, что на образец хиральных молекул направляют циркулярно поляризованный свет, который сам по себе обладает хиральностью — его можно представить как вращающийся по или против часовой стрелки. Этот поляризованный свет с определенной хиральностью выбивает из молекул электроны, и, как оказалось, распределения по направлениям их разлета зависит от того, совпадают ли «руки» молекулы и света. Регистрируя эту асимметрию, ученые могут с высокой точностью определять хиральность молекул. Однако у описанного метода есть фундаментальное ограничение: для наблюдения эффекта необходимо, чтобы и свет, и молекула — были хиральными.

В своей новой работе физики задались вопросом: что произойдет, если в этом взаимодействии появится третий хиральный участник — сам вылетающий электрон? В стандартном фотоэффекте электрон рассматривается как квантовая частица, описываемая в виде плоской волны. Однако современная физика позволяет создавать и детектировать так называемые закрученные электроны. Такой электрон не просто летит вперед, но и вращается вокруг своей оси движения, подобно крошечному торнадо, и несет в себе орбитальный угловой момент. Это вращение также может быть «правым» или «левым», что наделяет сам электрон свойством хиральности.

Ученые разработали общую теорию фотоэффекта, в котором детектируются именно такие вихревые электроны. Они проанализировали процесс, в котором участвуют три объекта, каждый из которых может быть хиральным или ахиральным (симметричным): фотон, молекула-мишень и выбитый электрон. Расчеты показали, что для наблюдения хиральной асимметрии, как и прежде, необходимо участие как минимум двух хиральных объектов, но теперь их комбинации стали гораздо богаче. Это привело к предсказанию нескольких новых, ранее не рассматривавшихся эффектов, которые выживают даже при усреднении по хаотической ориентации молекул в газе, что крайне важно для эксперимента.

 «Мы привыкли думать о хиральности как о свойстве молекул или света, — говорит Кирилл Базаров, младший научный сотрудник МФТИ, ассистент кафедры теоретической физики им. Л.Д. Ландау МФТИ. — Мы показали, что сам электрон может выступать в роли хирального зонда. Наша теория предсказывает, что можно, например, использовать обычный линейно-поляризованный свет для различения энантиомеров, если детектировать вихревые электроны».

Рисунок 2. Асимметрия фотоэлектронов для разных типов молекул. Графики показывают коэффициенты асимметрии (b) в зависимости от параметра θq. Синие линии — ахиральный н-бутан, красные — хиральный 2-бутанол. (a) Хиральные молекулы с циркулярно-поляризованным светом (p=±1) демонстрируют асимметрию для обычных электронов (m=0). (b) При детектировании вихревых электронов (m=±1) асимметрия наблюдается даже для ахиральных молекул. (c) Линейно-поляризованный свет выявляет разницу между энантиомерами (R/S) через асимметрию вихревых электронов (m=1) / © Kirill V. Bazarov et al., Physics Letters A.

В работе был предсказан новый тип асимметрии, который проявляется даже при ионизации ахиральных молекул. Если облучать симметричную молекулу хиральным светом, то число выбитых вихревых электронов, закрученных «вправо», не будет равно числу электронов, закрученных «влево». Таким образом, хиральность света можно измерить, анализируя хиральность рожденных им электронов.

Кроме того, оказалось, что  теория предсказывает возможность различать энантиомеры с помощью ахирального света. Обычный, линейно поляризованный свет, не обладающий собственной хиральностью, при взаимодействии с хиральной молекулой будет порождать асимметричное количество «правых» и «левых» вихревых электронов. Это означает, что для анализа хиральных молекул больше не требуется сложный источник циркулярно поляризованного света — достаточно стандартного лазера и детектора, способного различать вихревые электроны.

В будущем новые методы, основанные на взаимодействии с вихревыми электронами, могут привести к созданию нового поколения приборов для высокоточного анализа хиральных соединений, что найдет применение в фармацевтике для контроля чистоты лекарств, в астрохимии для поиска внеземной жизни и в фундаментальной физике для более глубокого понимания симметрий нашего мира.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
2 февраля, 08:40
Любовь С.

Астрономы впервые напрямую связали основание гигантского джета с «тенью» впервые «сфотографированной» сверхмассивной черной дыры M87*. Анализ данных, полученных с помощью Телескопа горизонта событий (EHT), позволил проследить, где именно формируется релятивистская струя и лучше понять механизмы ее возникновения.

2 февраля, 12:59
Редакция Naked Science

С середины XX века мирный атом ассоциируют прежде всего с АЭС. Но при всей важности последних иногда за ними не видят многие другие сферы применения атомных технологий — от транспорта до лечения заболеваний и применения в сельском хозяйстве, новых технологий получения сложных материалов и производства аккумуляторов. Всего на неэнергетические цели на планете работают 223 реактора. Попробуем разобраться, чем они занимаются и какие еще направления находятся в фокусе атомной отрасли.

2 февраля, 10:41
ПНИПУ

Число устойчивых к антибиотикам инфекций растет на 15% в год, унося миллионы жизней. Схожая проблема есть в онкологии. Существующие методы лечения — комбинированная и точечная терапия — несовершенны: первая слишком токсична, а вторая теряет эффективность из-за мутаций. Перспективная альтернатива — молекулярные гибриды, атакующие болезнь сразу по нескольким направлениям. Однако их создание сдерживает фундаментальное ограничение: современные технологии не могут придать этим молекулам стабильную 3D-форму, необходимую для точного воздействия. Чтобы решить эту проблему, ученые Пермского Политеха разработали метод, который заставляет гибридную молекулу самостоятельно принимать нужную трехмерную структуру. Это позволило получить новые соединения с потенциальным противоопухолевым и противовоспалительным действием.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

27 января, 13:01
Александр Березин

Кэтлин Рубинс выступила перед комитетом Национальных академий США и рассказала, что не так с новыми скафандрами для близкой высадки американцев на Луне. Учитывая ее 300-дневный опыт пребывания в космосе, критика выглядит довольно обоснованной. В прошлом году Рубинс ушла с поста руководителя отделения внекорабельной деятельности отдела астронавтов, где она участвовала в разработке новых лунных скафандров.

29 января, 19:38
Александр Березин

Некоторые исследователи предполагали, что по мере исчезновения морского льда белые медведи потеряют кормовую базу и начнут умирать от истощения. Однако их популяция, живущая в районе максимального исчезновения морского льда, напротив, существенно прибавила в весе.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно