• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
31.05.2023, 16:51
ЮФУ
1
855

В ЮФУ узнали, как саранча и стада травоядных животных оптимизируют алгоритмы искусственного интеллекта

❋ 4.8

Ученые Института компьютерных технологий и информационной безопасности ЮФУ занимаются созданием биоэвристик для решения задач глобальной оптимизации. Это самонастраивающиеся алгоритмы, обладающее коллективным разумом и самоорганизацией, применяемые при разработке спутниковых антенн, радиоприемников, а также в качестве основы для «компьютерных диджеев» и «нейромаркетинга». Созданный учеными алгоритм уже протестирован и показал качественные результаты. Еще одним итогом работы ученых стал новый коэволюционный самонастраивающийся алгоритм, способный решать сложные задачи глобальной оптимизации. Этот алгоритм, разработанный на основе эгоистического поведения в природе, демонстрирует улучшенную точность и производительность по сравнению с другими биоэвристиками.

В ЮФУ узнали, как саранча и стада травоядных животных оптимизируют алгоритмы искусственного интеллекта
В ЮФУ узнали, как саранча и стада травоядных животных оптимизируют алгоритмы искусственного интеллекта / ©Getty images / Автор: Pinaria Caprarius

Многие процессы в науке, технике, экономике и бизнесе формулируются как задача оптимизации: сокращение времени, снижение стоимости, минимизация рисков или увеличение дохода, производительности и эффективности. Перспективными для оптимизации разнообразных задач методами являются биоэвристические алгоритмы или, просто, биоэвристики. Это алгоритмические приемы, которые позволяют ограничить перебор, и основаны на имитации природных механизмов эволюции, интеллектуального группового поведении особей в живой природе.

В Южном федеральном университете это направление развивают ученые Института компьютерных технологий и информационной безопасности под руководством профессора кафедры математического обеспечения и применения ЭВМ Сергея Родзина. Кроме того, исследования в области роевого интеллекта входят в перечень приоритетных задач стратегических проектов программы развития ЮФУ «Приоритет 2030» (нацпроект «Наука и университеты»).

По словам экспертов ЮФУ, это новое стремительно развивающееся направление в искусственном интеллекте и машинном обучении. Хотя идея не новая, концепция биоэвристики была отражена еще у Станислава Лема в романе «Непобедимый» 1964 года. Непобедимый — это космический корабль землян, который на одной из планет столкнулся с роем эволюционировавших несложных роботов. Корабль землян оказался бессилен, столкнувшись с ними. В процессе эволюции и борьбы за существование, они стали частью природы планеты. Люди были вынуждены отступить перед «врагом», который, не обладая человеческим разумом, и способным лишь на простейшие реакции, тем не менее являлся практически непобедимым.

«Биоэвристики моделируют поведение множества агентов, локально взаимодействующих между собой и с окружающей средой. Идеи поведения исходят от природы, как правило, от биологических систем, например, колония муравьев, пчелиный рой, хемотаксис бактерий, стая китов, охотящаяся за крилем. Каждый агент следует очень простым правилам. Какой-то централизованной системы управления поведением агентов нет. Однако многоагентная система в целом обладает коллективным разумом и самоорганизацией», – профессор ИКТИБ ЮФУ Сергей Родзин.

Сегодня идеи биоэвристик перешли из мира фантастики в реальность. Например, их уже использовали при создании спутниковой антенны, а компания Genetic Programming разработала с помощью подобного алгоритма множество продуктов, включая зубные щетки Oral-B. В одном из университетов ученые использовали эволюционную биоэвристику для создания схемы электронного осциллятора (устройство, создающее повторяющиеся колебания или вибрации вокруг определенной точки равновесия).

Профессор кафедры математического обеспечения и применения ЭВМ Института компьютерных технологий и информационной безопасности ЮФУ Сергей Родзин / ©Пресс-служба ЮФУ

Получившийся в итоге набор транзисторов выдавал желаемый результат – регулярно повторяющийся сигнал. Правда, вскоре выяснилось, что схема оказалась не осциллятором, а радиоприемником. Она не производила собственных колебаний, зато ловила сигнал работающего рядом компьютера и выдавало его за «свой».

Однако это те примеры, когда материализация происходит с участием людей. Интересно, что биоэвристики также выступают самостоятельной основой для многих технологий. Например, в Британии открылся павильон, где бились за выживание роботы двух видов – «гелиофаги» и «хищники». Гелиофаги сами добывали энергию через солнечные батареи. Хищники охотились на гелиофагов и заряжались от них. Те, кто выживал, загружали свои «гены» в роботов следующего поколения. Один из роботов в ходе этого эксперимента поумнел настолько, что убежал и был настигнут на парковке, где его сбил автомобиль. С помощью данных алгоритмов также создан компьютерный ди-джей, который пишет музыку, отслеживая настроение людей. Работает он следующим образом: каждому посетителю клуба выдается браслет-датчик, фиксирующий пульс человека и его местонахождение в зале.

Эти данные биоэвристика использует для «выращивания» новых мелодий. Вначале машина вносит в музыку случайные мутации, а затем отслеживает реакции и выбирает те изменения, которые пришлись людям по вкусу. Еще один интересный пример – технология «нейромаркетинга». Идея состоит в сканировании мозга человека во время демонстрации рекламы, что позволяет отслеживать воздействие рекламных образов, а затем конструировать те, которые воздействовали наиболее сильно. Эта технология уже используется крупными корпорациями, среди которых Proctor&Gamble и Coca Cola.

«Еще пример из биологии. С помощью биоэвристики недавно была решена задача, поставленная в биологии свыше 100 лет назад – загадка регенерации червей. Биоэвристика моделировала различные варианты сетей, сформированных генами и белками червя, сопоставляя их с результатами экспериментов. При достижении частичного соответствия программа вносила в генетическую сеть случайные изменения и возобновляла процесс оптимизации. В результате множества итераций была получена сеть генетических связей, полностью соответствующая результатам практических исследований», – поделился Сергей Родзин.

Сейчас научный коллектив ИКТИБ ЮФУ работает над проектом «Эффективные биоэвристики, инспирированные животным миром, на основе выявления паттернов поведения для задач оптимизации многомерных функций и сегментации изображений», поддержанным грантом Российского научного фонда (РНФ).

По словам ученого, несмотря на достигнутые успехи в области создания биоэвристических алгоритмов на сегодняшний день имеются весомые научные проблемы, две из которых возможно решить в рамках данного проекта. Первая связана с установлением баланса между скоростью сходимости биоэвристик и расширением пространства поиска оптимальных решений.

«Скорость сходимости обозначает число шагов, затраченных алгоритмом для достижения приемлемой точности решения задачи. Речь идет о равновесии между способностью алгоритма находить новые решения и его возможностью достигать оптимума целевой функции или подходить достаточно близко к нему за конечное число шагов. Решить эту проблему предполагается на основе выявления паттернов индивидуального и коллективного поведения агентов в многоагентной системе. Это проблема имеет важное значение для обеспечения точности и производительности алгоритмов оптимизации в таких областях как распознавание образов, информационная безопасность, инженерное проектирование, интеллектуальный анализ данных, цифровая экономика», – рассказал руководитель гранта Сергей Родзин.

Вторая проблема заключается в разработке обучаемых оптимизаторов на основе накопленных знаний. Традиционные методы оптимизации основаны на подходе в стиле tabula rasa (с «чистого листа»), то есть без использования предварительных знаний о подходах к решению задачи. Однако ученые ЮФУ предлагают подход, в котором знания, включая те, которые генерируются в Интернете, могут быть использованы для автоматического поиска наиболее эффективного оптимизатора.

Футуролог и писатель Станислав Лем / ©Getty images

«Мы предлагаем подход, когда биоэвристику не нужно формировать вручную. Вместо этого, используя передачу информации, можно использовать знания, в том числе генерируемые в Интернете, для автоматического поиска наиболее эффективного оптимизатора. Это своего рода машинное обучение без необходимости разработки пользователем новых алгоритмов оптимизации, инспирированных природой. Мы считаем, что подобный подход в сочетании с технологиями облачных вычислений и Интернета-вещей, может занять центральное место в современные механизмах оптимизации», – отметил ученый.

Несмотря на то, что проект исследователей начался в январе 2023 года, на сегодняшний день уже получены весомые результаты. Так, ученые предложили биоэвристический алгоритм, моделирующий сочетание паттернов индивидуального и роевого поведения саранчи для решения задач оптимизации многомерных мульти-экстремальных функций. В данном случае саранча является репрезентативным примером насекомых, которые могут сочетать роевое и индивидуальное поведение, которое реализуется различными аттрактивными операторами.

«Две саранчи при индивидуальном поведении не стремятся сблизиться, если между ними небольшое расстояние и, наоборот, при роевом поведении саранча стремительно концентрируется вокруг особей, которые нашли источники пищи. Это позволяет не только более реалистично моделировать кооперативное поведение колонии саранчи, но и включить вычислительный механизм, позволяющий избежать таких недостатков многих популярных биоэвристик, как преждевременная сходимость, поддержать баланс между скоростью сходимости алгоритма и диверсификацией пространства поиска решений», – объяснил руководитель проекта.

Созданный алгоритм уже протестирован и показал качественные результаты, изложенные в журнале «Вестник ВГУ. Системный анализ и информационные технологии». Еще одним итогом работы ученых стал новый коэволюционный самонастраивающийся алгоритм, способный решать сложные задачи глобальной оптимизации. Этот алгоритм, разработанный на основе эгоистического поведения в природе, демонстрирует улучшенную точность и производительность по сравнению с другими биоэвристиками.

В его основе лежит моделирование поведения стада травоядных животных, оказывающихся под нападением стаи хищников. Поисковые агенты используют набор аттрактивных операторов поиска, основанных на паттернах индивидуального и коллективного поведения, а также на механизмах популяционного отбора. Они перемещаются в пространстве решений задачи оптимизации, имитируя различные виды поведения, включая эгоистичное.

Что отличает этот биоэвристик от других конкурирующих подходов, так это его способность сохранять баланс между скоростью сходимости и разнообразием пространства поиска решений. Благодаря этим вычислительным механизмам алгоритм обеспечивает высокую эффективность в поиске глобального минимума. Полученные результаты, опубликованные в издании «Известия вузов. Северо-Кавказский регион. Технические науки», были подтверждены статистически значимыми с помощью Т-критерия Уилкоксона, что подтверждает превосходство коэволюционного самонастраивающегося алгоритма в задачах оптимизации.

В дальнейшем ученые планируют создать научный задел и программные приложения для решения прикладных оптимизационных задач в области цифровой обработки изображений и компьютерного зрения, интеллектуального анализа и обработки данных, поиска информации, инженерного проектирования, медицинской диагностики. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Южный федеральный университет образован в рамках национального проекта "Образование" распоряжением Правительства Российской Федерации от 23 ноября 2006 года N1616-р (pdf) и приказом Министерства образования и науки Российской Федерации от 4 декабря 2006 года N1447 путем присоединения к Ростовскому государственному университету трех вузов: Таганрогского государственного радиотехнического университета, Ростовского государственного педагогического университета, Ростовской государственной академии архитектуры и искусств.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
29.12.2025, 14:08
Игорь Байдов

Бытует мнение, что в большинстве случаев великими учеными, спортсменами и музыкантами становятся те, кто с самого детства проявлял соответствующие способности. Поэтому родители с трепетом всматриваются в ранние увлечения своих чад, чтобы как можно раньше выявить талант. Однако авторы нового исследования выяснили, что такое поведение — ошибка. Оказывается, большинство тех, кто сегодня определяет лицо мировой науки, спорта и искусства, в детстве ничем особенным не выделялись. Более того, интенсивная «дрессировка» с малых лет скорее мешает, чем помогает достичь вершин во взрослой жизни.

30.12.2025, 12:18
Илья Гриднев

Компьютерное моделирование показало, что комета из китайских хроник 5 года до нашей эры могла визуально зависнуть над Иудеей благодаря синхронизации с вращением Земли. Это дает физическое объяснение библейскому описанию остановившейся звезды, хотя отсутствие упоминаний о таком ярком объекте в римских летописях ставит гипотезу под сомнение.

29.12.2025, 09:50
ПНИПУ

Добыча полезных ископаемых из карбонатных коллекторов, составляющих значительную часть мировых запасов, сейчас сталкивается с ключевой проблемой — низкой проницаемостью пород. Это значит, что нефть и газ находятся в изолированных порах и не могут естественным путем поступать к скважине, что делает традиционные методы добычи малоэффективными и очень дорогими. Стандартным решением для этого является кислотная обработка, когда в пласт закачивают реагент, который растворяет породу. Однако сейчас этот процесс остается непредсказуемым из-за отсутствия точных данных о трансформации породы при длительном воздействии кислотного раствора. Ученые из Пермского Политеха и ИПНГ РАН разработали уникальную методику кислотной обработки, которая позволяет более точно оценить изменение проницаемости породы. Разработка уникальна и не имеет аналогов в мире.

26.12.2025, 15:47
Максим Абдулаев

Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.

27.12.2025, 17:46
Адель Романова

После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.

28.12.2025, 16:21
Александр Березин

В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.

08.12.2025, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17.12.2025, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

23.12.2025, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

[miniorange_social_login]

Комментарии

1 Комментарий
-
0
+
//Cаранча и стада травоядных животных //оптимизируют алгоритмы искусственного интеллекта ------------------------------------------------------------------------------------ Так вот чем они, оказывается, занимаются.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно