• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.08.2023, 10:04
НИУ ВШЭ
1,2 тыс

В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение

❋ 4.3

Исследователи Международной лаборатории оценки практик и инноваций в образовании НИУ ВШЭ и компании Skillbox разработали модель, которая предсказывает вовлеченность пользователей онлайн-платформы. Она учитывает количество начатых занятий, выполненных домашних заданий, результаты тестирований, число недосмотренных видео, результаты прохождения тестов и другие характеристики. Ценность модели в возможностях дальнейшего практического применения — своевременная разработка мер поддержки обучающихся с низкой вовлеченностью и помощь в достижении их образовательных целей. В планах компании использовать информацию о вовлеченности студентов для выстраивания персонализированных треков обучения и сопровождения.

В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение
В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение / © Getty images / Автор: Caristania Fabricius

Вовлеченность в образовательный процесс — один из главных факторов результативного обучения взрослых, то есть достижения целей, которые ставили перед собой обучающиеся. При этом автоматизированной системы измерения вовлеченности, учитывающей также личный опыт обучающихся, на рынке образования сегодня не существует. Команда российских исследователей из НИУ ВШЭ и Skillbox проверили и построили построение модели, которая поможет отслеживать степень вовлечения обучающихся, разработать системные меры их поддержки.

«Skillbox в своей модели образовательного продукта всегда был ориентирован на занятых взрослых людей, которые осознанно выбирают асинхронное обучение и самостоятельно максимально подстраивают его под свой жизненный ритм. Мы, однако, понимаем, что вовлеченность в обучение при таком подходе может падать из-за перерывов в обучении, и активно исследуем поведение пользователей для построения более результативных отношений между учащимся и платформой», — комментирует Наталья Влодавская, директор по сервису, Skillbox.

Работа над моделью велась в четыре этапа. Первый — сбор данных. Это позволило определить вовлеченность более традиционными методами, а после сравнить эти результаты с результатами разработанной модели. Анкета состояла из 13 утверждений, распределенных по трем компонентам вовлеченности (согласно классической модели вовлеченности Дженнифер Фредрикс) — поведенческий (например, «Я регулярно делаю домашние задания»), когнитивный («Если я что-то не понимаю, я стараюсь разобраться в этом до конца») и эмоциональный («Я редко чувствую беспомощность во время обучения на курсе»). Финальная выборка составила 2 234 пользователя.

Сегментирование аудитории. По результатам опроса было выделено три сегмента студентов по уровню вовлеченности: низкий, средний и высокий. Вторым этапом стало построение предиктивной модели. Модель разработана с помощью алгоритмов машинного обучения. Учитывалось количество начатых занятий, выполненных домашних заданий, число недосмотренных видео, сумма всех попыток прохождения тестов и другие характеристики.

Валидация модели. Финальным этапом после получения данных и разработки модели стало интервью с обучающимися, с помощью которого проверили насколько выводы, полученные путем анализа цифровых следов, соотносятся с их субъективным опытом.

«В последние годы естественным образом вырос интерес исследовательского сообщества к созданию автоматизированных систем мониторинга опыта и прогресса обучающихся. И это задача не только и не столько техническая — такие системы позволяют нам лучше понять факторы, связанные с вовлеченностью, мотивацией, благополучием обучающихся, посмотреть на них в динамике, и, как результат — проектировать образовательный опыт более эффективно», — комментирует Юлия Герасимова, руководитель проекта, Институт образования НИУ ВШЭ.

Измерение вовлеченности на всех этапах подразумевает возможность использования цифровых следов и их автоматическое определение. В дальнейших планах — доработать модель таким образом, чтобы она предсказывала показатель дропаута (отсева) обучающихся. Для этого потребуется собрать данные об учебном статусе студентов, принявших участие в исследовании вовлеченности, через несколько месяцев. Кроме того, на основании ретроспективных данных уже сейчас можно сформировать и адаптировать условия обучения, при которых возможно увеличить шанс достижения образовательных целей.

Низкая вовлеченность человека — не только показатель того, что человек не хочет учиться. Вариантов может быть много: отсутствие времени, невозможность его корректно распределять, сложность в восприятии обучающей программы. Если можно определить пользователей, которым требуется помощь в достижении образовательных целей, то возможно повысить и результативность обучения и удовлетворенность обучающихся.

Skillbox — образовательная платформа, которая объединяет ведущих экспертов и практиков рынка, методистов и продюсеров образовательного контента. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
23 ноября, 11:08
Максим Абдулаев

Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.

24 ноября, 08:30
Любовь С.

Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.

23 ноября, 15:12
Любовь С.

Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.

21 ноября, 10:02
ПНИПУ

Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

23 ноября, 11:08
Максим Абдулаев

Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно