• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.08.2023
НИУ ВШЭ
1 124

В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение

4.3

Исследователи Международной лаборатории оценки практик и инноваций в образовании НИУ ВШЭ и компании Skillbox разработали модель, которая предсказывает вовлеченность пользователей онлайн-платформы. Она учитывает количество начатых занятий, выполненных домашних заданий, результаты тестирований, число недосмотренных видео, результаты прохождения тестов и другие характеристики. Ценность модели в возможностях дальнейшего практического применения — своевременная разработка мер поддержки обучающихся с низкой вовлеченностью и помощь в достижении их образовательных целей. В планах компании использовать информацию о вовлеченности студентов для выстраивания персонализированных треков обучения и сопровождения.

В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение
В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение / © Getty images / Автор: Caristania Fabricius

Вовлеченность в образовательный процесс — один из главных факторов результативного обучения взрослых, то есть достижения целей, которые ставили перед собой обучающиеся. При этом автоматизированной системы измерения вовлеченности, учитывающей также личный опыт обучающихся, на рынке образования сегодня не существует. Команда российских исследователей из НИУ ВШЭ и Skillbox проверили и построили построение модели, которая поможет отслеживать степень вовлечения обучающихся, разработать системные меры их поддержки.

«Skillbox в своей модели образовательного продукта всегда был ориентирован на занятых взрослых людей, которые осознанно выбирают асинхронное обучение и самостоятельно максимально подстраивают его под свой жизненный ритм. Мы, однако, понимаем, что вовлеченность в обучение при таком подходе может падать из-за перерывов в обучении, и активно исследуем поведение пользователей для построения более результативных отношений между учащимся и платформой», — комментирует Наталья Влодавская, директор по сервису, Skillbox.

Работа над моделью велась в четыре этапа. Первый – сбор данных. Это позволило определить вовлеченность более традиционными методами, а после сравнить эти результаты с результатами разработанной модели. Анкета состояла из 13 утверждений, распределенных по трем компонентам вовлеченности (согласно классической модели вовлеченности Дженнифер Фредрикс) — поведенческий (например, «Я регулярно делаю домашние задания»), когнитивный («Если я что-то не понимаю, я стараюсь разобраться в этом до конца») и эмоциональный («Я редко чувствую беспомощность во время обучения на курсе»). Финальная выборка составила 2 234 пользователя.

Сегментирование аудитории. По результатам опроса было выделено три сегмента студентов по уровню вовлеченности: низкий, средний и высокий. Вторым этапом стало построение предиктивной модели. Модель разработана с помощью алгоритмов машинного обучения. Учитывалось количество начатых занятий, выполненных домашних заданий, число недосмотренных видео, сумма всех попыток прохождения тестов и другие характеристики.

Валидация модели. Финальным этапом после получения данных и разработки модели стало интервью с обучающимися, с помощью которого проверили насколько выводы, полученные путем анализа цифровых следов, соотносятся с их субъективным опытом.

«В последние годы естественным образом вырос интерес исследовательского сообщества к созданию автоматизированных систем мониторинга опыта и прогресса обучающихся. И это задача не только и не столько техническая – такие системы позволяют нам лучше понять факторы, связанные с вовлеченностью, мотивацией, благополучием обучающихся, посмотреть на них в динамике, и, как результат – проектировать образовательный опыт более эффективно», — комментирует Юлия Герасимова, руководитель проекта, Институт образования НИУ ВШЭ.

Измерение вовлеченности на всех этапах подразумевает возможность использования цифровых следов и их автоматическое определение. В дальнейших планах — доработать модель таким образом, чтобы она предсказывала показатель дропаута (отсева) обучающихся. Для этого потребуется собрать данные об учебном статусе студентов, принявших участие в исследовании вовлеченности, через несколько месяцев. Кроме того, на основании ретроспективных данных уже сейчас можно сформировать и адаптировать условия обучения, при которых возможно увеличить шанс достижения образовательных целей.

Низкая вовлеченность человека — не только показатель того, что человек не хочет учиться. Вариантов может быть много: отсутствие времени, невозможность его корректно распределять, сложность в восприятии обучающей программы. Если можно определить пользователей, которым требуется помощь в достижении образовательных целей, то возможно повысить и результативность обучения и удовлетворенность обучающихся.

Skillbox — образовательная платформа, которая объединяет ведущих экспертов и практиков рынка, методистов и продюсеров образовательного контента. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 20:04
Юлия Трепалина

Для профилактики алкоголизма среди молодежи важно не только понимать, что побуждает употреблять спиртное, но и знать, почему молодые люди могут отказываться от выпивки. Более десятка таких причин в недавнем исследовании привели ученые из Соединенных Штатов. Комплексный учет мотивов позволит предупреждать развитие пагубной привычки, отметили специалисты.

Вчера, 11:39
Александр Березин

Традиционное представление о роли человека в земных экосистемах известно: он нарушает их нормальную работу и снижает биоразнообразие. Однако первая попытка изучить следы пыльцы за последние 12 тысяч лет принесла скорее противоположные данные — как минимум для континентов, полностью расположенных в Северном полушарии.

Вчера, 17:59
Татьяна

Аппарат «Кассини», работавший на орбите Сатурна с 2004 по 2017 год, детально картировал его крупнейший спутник — Титан. Выяснилось, что ближе к полярным областям на поверхности есть моря и озера с жидкими углеводородами, куда впадают пополняемые атмосферными осадками реки. По мере изучения этой информации у исследователей возникло все больше вопросов. Каков состав жидкости и что определило очертания береговых линий? Воспользовавшись данными радарной съемки, американские ученые уточнили состав морей Кракена, Лигеи и Пунги и описали свойства их поверхностей.

Позавчера, 18:00
Александр Березин

Авторы нового исследования впервые показали, что круглые провалы в лунной поверхности не просто близки к многокилометровым пещерам на естественном спутнике Земли, но и располагают тоннелями, ведущими в глубину.

12 июля
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

13 июля
Татьяна

Все клеточные организмы ученые ведут от гипотетического предка — LUCA. Существует масса предположений и расчетов о том, как он был устроен, где и когда возник. В новой работе исследователи из Великобритании попытались ответить на эти вопросы.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

21 июня
Nadya

Земля начала формироваться примерно 4,5 миллиарда лет назад. Чтобы понять, как это происходило в ранние периоды развития нашей планеты, ученые ищут образцы древних горных пород. Одну из таких, возрастом почти 3,5 миллиарда лет, обнаружили рядом с городом Колли в Австралии.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно