Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение
Исследователи Международной лаборатории оценки практик и инноваций в образовании НИУ ВШЭ и компании Skillbox разработали модель, которая предсказывает вовлеченность пользователей онлайн-платформы. Она учитывает количество начатых занятий, выполненных домашних заданий, результаты тестирований, число недосмотренных видео, результаты прохождения тестов и другие характеристики. Ценность модели в возможностях дальнейшего практического применения — своевременная разработка мер поддержки обучающихся с низкой вовлеченностью и помощь в достижении их образовательных целей. В планах компании использовать информацию о вовлеченности студентов для выстраивания персонализированных треков обучения и сопровождения.
Вовлеченность в образовательный процесс — один из главных факторов результативного обучения взрослых, то есть достижения целей, которые ставили перед собой обучающиеся. При этом автоматизированной системы измерения вовлеченности, учитывающей также личный опыт обучающихся, на рынке образования сегодня не существует. Команда российских исследователей из НИУ ВШЭ и Skillbox проверили и построили построение модели, которая поможет отслеживать степень вовлечения обучающихся, разработать системные меры их поддержки.
«Skillbox в своей модели образовательного продукта всегда был ориентирован на занятых взрослых людей, которые осознанно выбирают асинхронное обучение и самостоятельно максимально подстраивают его под свой жизненный ритм. Мы, однако, понимаем, что вовлеченность в обучение при таком подходе может падать из-за перерывов в обучении, и активно исследуем поведение пользователей для построения более результативных отношений между учащимся и платформой», — комментирует Наталья Влодавская, директор по сервису, Skillbox.
Работа над моделью велась в четыре этапа. Первый — сбор данных. Это позволило определить вовлеченность более традиционными методами, а после сравнить эти результаты с результатами разработанной модели. Анкета состояла из 13 утверждений, распределенных по трем компонентам вовлеченности (согласно классической модели вовлеченности Дженнифер Фредрикс) — поведенческий (например, «Я регулярно делаю домашние задания»), когнитивный («Если я что-то не понимаю, я стараюсь разобраться в этом до конца») и эмоциональный («Я редко чувствую беспомощность во время обучения на курсе»). Финальная выборка составила 2 234 пользователя.
Сегментирование аудитории. По результатам опроса было выделено три сегмента студентов по уровню вовлеченности: низкий, средний и высокий. Вторым этапом стало построение предиктивной модели. Модель разработана с помощью алгоритмов машинного обучения. Учитывалось количество начатых занятий, выполненных домашних заданий, число недосмотренных видео, сумма всех попыток прохождения тестов и другие характеристики.
Валидация модели. Финальным этапом после получения данных и разработки модели стало интервью с обучающимися, с помощью которого проверили насколько выводы, полученные путем анализа цифровых следов, соотносятся с их субъективным опытом.
«В последние годы естественным образом вырос интерес исследовательского сообщества к созданию автоматизированных систем мониторинга опыта и прогресса обучающихся. И это задача не только и не столько техническая — такие системы позволяют нам лучше понять факторы, связанные с вовлеченностью, мотивацией, благополучием обучающихся, посмотреть на них в динамике, и, как результат — проектировать образовательный опыт более эффективно», — комментирует Юлия Герасимова, руководитель проекта, Институт образования НИУ ВШЭ.
Измерение вовлеченности на всех этапах подразумевает возможность использования цифровых следов и их автоматическое определение. В дальнейших планах — доработать модель таким образом, чтобы она предсказывала показатель дропаута (отсева) обучающихся. Для этого потребуется собрать данные об учебном статусе студентов, принявших участие в исследовании вовлеченности, через несколько месяцев. Кроме того, на основании ретроспективных данных уже сейчас можно сформировать и адаптировать условия обучения, при которых возможно увеличить шанс достижения образовательных целей.
Низкая вовлеченность человека — не только показатель того, что человек не хочет учиться. Вариантов может быть много: отсутствие времени, невозможность его корректно распределять, сложность в восприятии обучающей программы. Если можно определить пользователей, которым требуется помощь в достижении образовательных целей, то возможно повысить и результативность обучения и удовлетворенность обучающихся.
Skillbox — образовательная платформа, которая объединяет ведущих экспертов и практиков рынка, методистов и продюсеров образовательного контента.
Сапиенсы и неандертальцы, вероятно, вступали в контакты на огромной территории, протянувшейся через целый континент. Эти контакты, по мнению авторов нового исследования, не были редкими эпизодами, как ранее предполагали, а сам процесс длился на протяжении тысяч лет.
В конце 2024 года зонд NASA «Юнона» зарегистрировал извержение сразу нескольких вулканов на спутнике Юпитера Ио — самом геологически активном теле Солнечной системы. Выяснилось, что под поверхностью этой луны скрыта обширная сеть взаимосвязанных магматических резервуаров. Открытие меняет устоявшиеся представления о внутреннем строении спутника газового гиганта.
Ученые НИУ ВШЭ выявили молекулярный механизм агрессивного течения рака молочной железы. Оказалось, что источником сигналов, поддерживающих рост опухоли, служит не она сама, а ее микроокружение. Исследователи также показали, что снижение уровня белка IGFBP6 в микроокружении опухоли приводит к накоплению макрофагов — иммунных клеток, связанных с повышенным риском рецидива. Эти данные уже сейчас позволяют точнее оценивать риски у пациенток, а в перспективе — разрабатывать препараты, направленные на клетки микроокружения опухоли.
Некоторые исследователи предполагали, что по мере исчезновения морского льда белые медведи потеряют кормовую базу и начнут умирать от истощения. Однако их популяция, живущая в районе максимального исчезновения морского льда, напротив, существенно прибавила в весе.
Биологи использовали данные отлова змей за 22 года, чтобы объяснить появление редких ядовитых рептилий в засушливых и нетипичных для них районах штата Гоа. Анализ показал, что королевские кобры Западных Гат используют железнодорожную сеть как скоростной коридор для расселения, случайно путешествуя в товарных вагонах из родных лесов к побережью.
Астрономы впервые напрямую связали основание гигантского джета с «тенью» первой «сфотографированной» сверхмассивной черной дыры M87*. Анализ данных, полученных с помощью Телескопа горизонта событий (EHT), позволил проследить, где именно формируется релятивистская струя и лучше понять механизмы ее возникновения.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
