Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ создали модель, предсказывающую вовлеченность взрослых людей в обучение
Исследователи Международной лаборатории оценки практик и инноваций в образовании НИУ ВШЭ и компании Skillbox разработали модель, которая предсказывает вовлеченность пользователей онлайн-платформы. Она учитывает количество начатых занятий, выполненных домашних заданий, результаты тестирований, число недосмотренных видео, результаты прохождения тестов и другие характеристики. Ценность модели в возможностях дальнейшего практического применения — своевременная разработка мер поддержки обучающихся с низкой вовлеченностью и помощь в достижении их образовательных целей. В планах компании использовать информацию о вовлеченности студентов для выстраивания персонализированных треков обучения и сопровождения.
Вовлеченность в образовательный процесс — один из главных факторов результативного обучения взрослых, то есть достижения целей, которые ставили перед собой обучающиеся. При этом автоматизированной системы измерения вовлеченности, учитывающей также личный опыт обучающихся, на рынке образования сегодня не существует. Команда российских исследователей из НИУ ВШЭ и Skillbox проверили и построили построение модели, которая поможет отслеживать степень вовлечения обучающихся, разработать системные меры их поддержки.
«Skillbox в своей модели образовательного продукта всегда был ориентирован на занятых взрослых людей, которые осознанно выбирают асинхронное обучение и самостоятельно максимально подстраивают его под свой жизненный ритм. Мы, однако, понимаем, что вовлеченность в обучение при таком подходе может падать из-за перерывов в обучении, и активно исследуем поведение пользователей для построения более результативных отношений между учащимся и платформой», — комментирует Наталья Влодавская, директор по сервису, Skillbox.
Работа над моделью велась в четыре этапа. Первый — сбор данных. Это позволило определить вовлеченность более традиционными методами, а после сравнить эти результаты с результатами разработанной модели. Анкета состояла из 13 утверждений, распределенных по трем компонентам вовлеченности (согласно классической модели вовлеченности Дженнифер Фредрикс) — поведенческий (например, «Я регулярно делаю домашние задания»), когнитивный («Если я что-то не понимаю, я стараюсь разобраться в этом до конца») и эмоциональный («Я редко чувствую беспомощность во время обучения на курсе»). Финальная выборка составила 2 234 пользователя.
Сегментирование аудитории. По результатам опроса было выделено три сегмента студентов по уровню вовлеченности: низкий, средний и высокий. Вторым этапом стало построение предиктивной модели. Модель разработана с помощью алгоритмов машинного обучения. Учитывалось количество начатых занятий, выполненных домашних заданий, число недосмотренных видео, сумма всех попыток прохождения тестов и другие характеристики.
Валидация модели. Финальным этапом после получения данных и разработки модели стало интервью с обучающимися, с помощью которого проверили насколько выводы, полученные путем анализа цифровых следов, соотносятся с их субъективным опытом.
«В последние годы естественным образом вырос интерес исследовательского сообщества к созданию автоматизированных систем мониторинга опыта и прогресса обучающихся. И это задача не только и не столько техническая — такие системы позволяют нам лучше понять факторы, связанные с вовлеченностью, мотивацией, благополучием обучающихся, посмотреть на них в динамике, и, как результат — проектировать образовательный опыт более эффективно», — комментирует Юлия Герасимова, руководитель проекта, Институт образования НИУ ВШЭ.
Измерение вовлеченности на всех этапах подразумевает возможность использования цифровых следов и их автоматическое определение. В дальнейших планах — доработать модель таким образом, чтобы она предсказывала показатель дропаута (отсева) обучающихся. Для этого потребуется собрать данные об учебном статусе студентов, принявших участие в исследовании вовлеченности, через несколько месяцев. Кроме того, на основании ретроспективных данных уже сейчас можно сформировать и адаптировать условия обучения, при которых возможно увеличить шанс достижения образовательных целей.
Низкая вовлеченность человека — не только показатель того, что человек не хочет учиться. Вариантов может быть много: отсутствие времени, невозможность его корректно распределять, сложность в восприятии обучающей программы. Если можно определить пользователей, которым требуется помощь в достижении образовательных целей, то возможно повысить и результативность обучения и удовлетворенность обучающихся.
Skillbox — образовательная платформа, которая объединяет ведущих экспертов и практиков рынка, методистов и продюсеров образовательного контента.
На Луне нет свободного кислорода, а значит, и окисленного железа там быть не должно. Меж тем оно в лунном грунте есть, и это недавно подтвердилось после анализа образцов, доставленных китайской миссией «Чанъэ-6». Планетологи заподозрили, что лунные «ржавые» минералы — последствия астероидных ударов.
Долгие годы исследователи полагали, что внутренняя структура полости носа неандертальцев была устроена таким образом, что помогала этим людям переносить холод. Однако авторы нового исследования поставили под сомнение эту гипотезу. Ученые впервые проанализировали носовую полость неандертальца в хорошо сохранившемся черепе и выяснили, что его нос не был приспособлен к суровому климату.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
