Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ТюмГУ пришли к выводу, что «умные» фермы станут еще умнее
Специалисты лаборатории сельскохозяйственной микологии и биологической защиты растений Института экологической и сельскохозяйственной биологии (X-BIO) ТюмГУ изучили вопросы создания интеллектуальных систем поддержки принятия решений для умной сельскохозяйственной фермы.
Создание умных ферм, в частности городских (city farm), в последние годы стало одной из тенденций развития в агроинженерии и городском строительстве. Умные городские фермы — высокотехнологичные комплексы, в которых автоматика контролирует производственные процессы, обеспечивает оптимальные параметры работы технологического оборудования, микроклимата, питательной среды для выращивания сельскохозяйственной продукции.
Высокий уровень автоматизации существенно снижает степень участия человека в производственных процессах. Как следствие, меняются требования к опыту и профессиональным знаниям в области сельского хозяйства владельца и персонала такой фермы.
Однако, несмотря на то, что автоматизированный комплекс решает самостоятельно многие производственные задачи, не исключается возникновение ситуаций, требующих квалифицированного вмешательства специалистов.
Статья «Нейросети компьютерного зрения в системах поддержки принятия решений на умной ферме» ученых ТюмГУ Игоря и Дмитрия Глухих, Алексея Прохошина и Татьяны Филатовой вышла в «Вестнике российской сельскохозяйственной науки».
Ученые выяснили, что возможные поломки оборудования, заболевания или вредители выращиваемых культур, изменение спроса на рынке и необходимость перестройки бизнес-процессов требуют грамотных и своевременных решений, вызывая трудности в условиях отсутствия экспертов (агрономы, инженеры).
Дальнейшее развитие цифровых технологий для умных ферм связывают с повышением степени их интеллектуализации, что должно обеспечить помощь специалистам при поиске и принятии решений в сложных ситуациях, выходящих за рамки ежедневной производственной деятельности.
Возникает актуальная перспектива создания интеллектуальных систем поддержки принятия решений (СППР), способных на основе наблюдений, сбора и обработки данных автоматически выявлять проблемы и предлагать экспертные рекомендации для действий.
Исследования в области нейронных сетей и машинного обучения уже показали их возможности для отдельных задач наблюдения и оценки выращиваемой продукции – определение состояний и классификация растений, обнаружение заболеваний.
Ученые исследовали возможности современных нейросетей компьютерного зрения для применения их в прикладных задачах поддержки принятия решений при эксплуатации умной фермы как компонентов общего процесса вывода решений в СППР. Методика включала использование предобученных нейросетевых моделей с их дообучением на собственных наборах изображений и последующей оценкой показателей точности обнаружения и классификации.
Настроенные на подобные задачи нейросети в системах поддержки принятия решений дополняются алгоритмами, работающими с базами знаний и расчетно-логическими моделями. В отличие от ранее проведенных исследований, где с помощью нейросети обнаруживают заболевания или вредителей, описанный в статье алгоритм СППР позволяет не только выявить проблему, но и предложить для нее решение, в том числе, с учетом дополнительных условий и возможностей.
Также доступно расширение функциональных возможностей СППР другими задачами, отвечающими бизнес-потребностям владельца умной фермы (оценка степени зрелости плодов, прогноз объема урожая с определением сортности (кондиция) продукции, подсчет завязей и другое).
Полученные данные позволяют сделать вывод о возможности и целесообразности применения нейросетей при решении ряда прикладных задач, таких, как обнаружение и классификация заболеваний, степень зрелости плодов, прогноз объема выпускаемой продукции.
Настроенные на подобные задачи нейросети в СППР дополняются алгоритмами, работающими с базами знаний и расчетно-логическими моделями. Таким образом, создается программно-аппаратный комплекс, который дает возможность не только автоматизировать выполнение текущих бизнес-задач, но и рекомендовать решения при возникновении сложных ситуаций, которые в обычных условиях требуют от персонала большого профессионального опыта и знаний.
Новый уровень автоматизации и интеллектуализации умной фермы будет стимулировать рост этого направления сельскохозяйственной индустрии. Исследование провели на базе материалов, оборудования и данных Агробиотехкомплекса ТюмГУ.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Ученые уверены, что покрытая водяным льдом юпитерианская луна Европа скрывает внутри себя глобальный океан, но сомневаются в его жизнепригодности. В недавнем исследовании они попытались оценить степень активности в недрах спутника и пришли к неутешительному выводу: тектоника там вряд ли способна обеспечить обогащение воды минералами.
Исследователи Центра языка и мозга ВШЭ с помощью магнитоэнцефалографии изучили, как мозг взрослых и детей реагирует на слова при чтении. Они показали, что у детей мозг дольше обрабатывает даже часто употребляющиеся в речи слова, а слова, которые встречаются редко, и псевдослова обрабатывает одинаково — медленно и по частям. С возрастом система перестраивается: высокочастотные слова переходят на быстрый маршрут, а вот новые сочетания букв по-прежнему анализируются медленно.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
