Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские исследователи «заглянули внутрь» нанопоры суперконденсатора
Ученые МИЭМ НИУ ВШЭ совместно с учеными ИХР РАН смоделировали поведение ионных жидкостей в заряженных углеродных порах размером 1–15 нанометров и оценили подвижность их катионов и анионов. Выяснилось, что с увеличением размера аниона его подвижность растет, а у катиона, наоборот, с увеличением размера подвижность снижается. Данные об ионных жидкостях помогут эффективнее разрабатывать суперконденсаторы на их основе.
Исследование опубликовано в журнале Journal of Molecular Liquids. Работа выполнена в рамках гранта РНФ. Соль в твердом состоянии имеет структуру, при которой ее заряженные частицы (ионы) упорядочены в кристаллической решетке. Но если нагреть, например, поваренную соль до температуры около 800 градусов, то кристаллическая решетка разрушится, ионы начнут свободно двигаться, и твердые кристаллы преобразуются в жидкость. Такие соли называют ионными жидкостями. Исследователи считают, что ионные жидкости перспективно использовать как альтернативу растворам электролитов в суперконденсаторах — электрохимических устройств для хранения энергии.
Плюс использования ионных жидкостей в том, что их ионы подвижнее, чем в твердых электролитах с кристаллической решеткой, а концентрация ионов выше, чем в растворах, благодаря тому, что ионы не отделены друг от друга молекулами растворителя. Также из-за особенностей структуры они остаются жидкими при низких температурах, что важно при производстве суперконденсаторов для устройств цифровой связи, бытовой электроники, гибридных электромобилей и так далее.
Ионные жидкости как электролит применяют совместно с пористыми электродами. И чтобы использовать их эффективно, нужно понимать и учитывать их структурные и электрические свойства внутри маленьких пор электрода. Российские ученые смоделировали поведение четырех ионных жидкостей и выяснили, как влияет на их свойства замена ионов. Моделирование проводилось в наноразмерных порах с заряженными углеродными стенками шириной от 1 до 15 нм с использованием катионов [EMIM]+ и [OMIM]+ ( 1-этил-3-метилимидазолий и 1-октил-3-метилимидазолий), а также анионов [BF4]- и [NTf2]- (тетрафторборат и бис(трифторметилсульфонил)имид).
Исследователи изучили, как влияет замена иона на коэффициент диффузии — показатель, который определяет подвижность ионов. Чем выше коэффициент диффузии, тем больше подвижность. А если подвижность большая, то ионную жидкость можно использовать как среду для эффективного переноса заряда.
«Экспериментально нет возможности измерить коэффициент диффузии ионной жидкости в нанопоре. Но с помощью моделирования динамики молекул и даже атомов, взаимодействующих друг с другом, мы можем “подглядеть”, что происходит внутри вещества, — поясняет профессор МИЭМ НИУ ВШЭ Юрий Будков. — Мы “ставим компьютерный эксперимент”, решая уравнения Ньютона для каждого атома и молекулы. А затем с помощью методов статистической физики рассчитываем характеристики, которые нам интересны: коэффициенты диффузии и электропроводности, парные корреляционные функции, угловые распределения и так далее».
Как и ожидали ученые, коэффициент диффузии у катиона [EMIM]+ (положительно заряженного иона) оказался выше, чем у катиона [OMIM]+ с длинной алкильной цепью, которая и ограничивает его подвижность. При этом противоположный результат получился при моделировании аниона (отрицательно заряженного иона). Выяснилось, что с увеличением размера аниона подвижность, наоборот, растет. Ученые предполагают, что для малых анионов происходит более сильное связывание с катионом, из-за чего их подвижность снижается.
«Можно представить это на модели двух заряженных шариков — большого и малого размеров. Если взять одинаковое количество заряда и распределить его по поверхности, то на шаре меньшего размера плотность заряда получится больше, — поясняет Юрий Будков. — Поэтому анион меньшего размера сможет сильнее связываться с заряженными стенками поры и катионами. И получается, что уменьшение размера приводит к уменьшению подвижности».
В целом у катионов коэффициенты диффузии оказались выше, чем у анионов, даже если радиус и молярная масса были больше. Как следствие, катионы лучше переносят заряд по сравнению с анионами, несмотря на их размер. Жидкость [EMIM][NTf2], ионы которой имеют более высокие коэффициенты диффузии, обладала наибольшей электропроводностью. В то же время, несмотря на более низкие коэффициенты диффузии ионов, [EMIM][BF4] по сравнению с [OMIM][NTf2] обладала более высокой электропроводностью. Ученые считают, что это связано с высокой концентрацией носителей заряда.
«Полученные данные интересны для электрохимических приложений, которые используют при разработке суперконденсаторов. Сейчас мы изучили основные особенности влияния химической структуры катиона и природы аниона на транспортные свойства ионных жидкостей в условиях ограниченной геометрии. В будущем мы планируем также рассмотреть новые ионные жидкости с примесями различных растворителей и дополнительно вычислить не изученный в этом исследовании параметр вязкости», — поясняет один из авторов статьи, научный сотрудник МИЭМ НИУ ВШЭ Дарья Гурина.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Международная команда ученых обнаружила в море Уэдделла ранее неизвестное место массового гнездования антарктических рыб Lindbergichthys nudifrons. Океанологи зафиксировали скопления более тысячи ухоженных гнезд, расположенных по сложным геометрическим узорам. Коллективное расселение помогает рыбам защищаться от хищников.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Владельцы домашних животных нередко «очеловечивают» их и окружают заботой так же, как маленьких детей. Кажется, что такое внимание должно помочь питомцам прожить долгую счастливую жизнь и уберечь их от болезней, однако ученые заметили противоположный эффект. Его в новой книге описала международная команда ветеринаров.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
