Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Предложен новый взгляд на проблему низкой энергоэффективности литий-ионных батарей
Международная научная группа с участием ученых Сколковского института науки и технологий предоставила экспериментальное опровержение общепринятому объяснению низкой энергоэффективности литий-ионных батарей. Исследователи объяснили это явление медленным переносом электронов между атомами кислорода и переходных металлов в кристаллической структуре катода, а не миграцией атомов внутри структуры в процессе заряда/разряда, как считалось ранее.
Работа опубликована 16 сентября в журнале Nature Chemistry. Литий-ионные аккумуляторы уже повсеместно используются в портативной электронике и электромобилях. А применение в них перспективных катодных материалов нового поколения на основе литий-обогащенных оксидов позволит в два раза увеличить их емкость и, соответственно, время автономной работы мобильных устройств и пробег электромобилей. Однако коммерческому внедрению подобных материалов препятствует их низкая энергоэффективность.
Дело в том, что для заряда такой батареи требуется гораздо большее напряжение, чем она может далее обеспечить на разряде. Этот эффект, называемый гистерезисом напряжения, приводит к существенной потере энергии и увеличивает экономические издержки конечного потребителя. Таким образом, чтобы раскрыть потенциал батарей с катодами из литий-обогащенных оксидов, необходимо подавить негативный эффект гистерезиса напряжения, но это невозможно без понимания природы процессов, на которые уходит потерянная энергия.
Авторы опубликованной в журнале Nature Chemistry статьи экспериментально обосновывают несостоятельность принятого до сих пор объяснения гистерезиса напряжения и предлагают новое. При работе литий-ионной батареи ионы лития перемещаются между двумя ее электродами. Сначала, во время заряда, они мигрируют на анод, оставляя «вакансии» в кристаллической структуре катода. Потом, в процессе разряда, ионы возвращаются на свои места на катоде, обеспечивая электрический ток для работы подключенного устройства.
«Но параллельно в процессе заряда батареи часть атомов переходных металлов в катоде мигрирует в освободившиеся вакансии лития, а затем возвращается назад на разряде. На это перемещение туда-обратно и расходуется часть полезной энергии так объясняли гистерезис раньше», – рассказал соавтор работы, аспирант Сколтеха Анатолий Морозов.
Чтобы проверить эту гипотезу, ученые проследили за положением атомов переходных металлов в структуре литий-обогащенного катодного материала Li1.17Ti0.33Fe0.5O2 на разных стадиях работы батареи. Этот материал был выбран в качестве модельного из-за своего чрезвычайно большого (более 1 вольта) гистерезиса напряжения. Визуализацию атомной структуры Li1.17Ti0.33Fe0.5O2 (см. изображение ниже) удалось обеспечить при помощи просвечивающего электронного микроскопа Центра коллективного пользования «Визуализация высокого разрешения» Сколтеха.
Оказалось, что при работе батареи значимой миграции атомов железа или титана в структуре катодного материала не происходит, то есть энергия расходуется на какой-то иной внутренний процесс. «Наши наблюдения подтолкнули команду взглянуть на гистерезис напряжения иначе и объяснить эффект гистерезиса напряжения не обратимой миграцией катионов, а обратимым переносом электронов между атомами кислорода и переходных металлов.
В процессе заряда батареи некоторые электроны железа захватываются атомами кислорода, затем они возвращаются на место при разряде. На этот обратимый процесс и уходит часть энергии», – объяснил профессор Артем Абакумов, директор Центра энергетических наук и технологий Сколтеха.
«Понимая природу гистерезиса напряжения как связанного с переносом электронов явления, можно сгладить этот вредный эффект и получить тем самым новое поколение литий-ионных батарей с рекордно высокой удельной энергоемкостью для электрокаров и переносной электроники, – продолжил ученый. – Чтобы сделать этот следующий шаг возможным, химики могли бы управлять величиной барьера электронного переноса за счет настройки степени ковалентности связи катион-анион, опираясь на таблицу Менделеева и такие понятия, как „химическая мягкость“».
«Наша работа демонстрирует потенциал продвинутых методов просвечивающей электронной микроскопии для визуализации и расшифровки локальной кристаллической структуры материалов высокой сложности, – добавил Морозов. – Здорово, что студенты и молодые ученые Сколтеха имеют прямой доступ к таким высокотехнологичным инструментам, как просвечивающие электронные микроскопы с коррекцией аберраций, и возможность совершенствовать навыки самостоятельной работы с ними.
Это позволяет нам вносить вклад в исследования металл-ионных аккумуляторов на самом высоком уровне и сотрудничать с зарубежными коллегами как из индустрии, так и из научного сообщества». Помимо химиков Сколтеха, в исследовании принимали участие ученые из Коллеж де Франс, Университета Монпелье, Сорбонны, Мюнхенского технического университета, Института Пауля Шеррера, Университета По и Адурской области, а также Сети по электрохимическому хранению энергии (RS2E).
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии