Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработан нейросетевой алгоритм, повышающий качество токарной обработки
Для механической обработки металла на предприятиях используют специальные станки, которые режут, точат и шлифуют детали по заданным программам. Но зачастую режимы обработки приходится вручную корректировать из-за меняющихся во время производства свойств как инструмента, так и изделия. Сегодня активно развивается и внедряется в промышленность так называемое адаптивное управление станками, когда процесс обработки автоматически приспосабливается к изменяющимся условиям. Для его реализации и стабильной работы требуется специальное математическое обеспечение. Ученые Пермского Политеха разработали эффективный алгоритм адаптивного управления на основе искусственного интеллекта.
Статья опубликована в Journal of Digital Science. Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет 2030».
При обработке металлических заготовок на стандартных станках с числовым управлением программу настраивают на определенные параметры. Учитывают твердость обрабатываемого материала, толщину слоя, который необходимо с него снять, и многие другие показатели, влияющие на качество итогового изделия. Но в процессе резания металла происходят неконтролируемые случайные изменения свойств режущих инструментов. Кроме того, каждая следующая заготовка из обрабатываемой партии имеет отличия в структуре поверхности и твердости. Все это требует постоянного контроля со стороны оператора станка.
Адаптивное управление, в отличие от обычных систем, обеспечивает автоматическое приспособление параметров процесса к изменяющимся условиям.
«На основе получаемой информации о текущем состоянии процесса обработки система сама увеличивает или уменьшает объем снимаемого металла с заготовки, тем самым поддерживая предельное значение какого-либо заданного параметра, например, силы резания. В более сложном случае — обеспечивает получение оптимальных значений точности, производительности или себестоимости обработки заготовок», — рассказывает Владимир Онискив, доцент кафедры вычислительной математики, механики и биомеханики ПНИПУ, кандидат технических наук.
Методы искусственного интеллекта все чаще применяются в системах адаптивного управления процессами токарной обработки. Однако еще недостаточно изучен вопрос, как при этом износ инструмента влияет на шероховатость обрабатываемой поверхности. Ученые Пермского Политеха разработали алгоритм с использованием нейросети, который обеспечивает необходимый уровень шероховатости и повышает производительность резания.
«Мы предположили, что этот показатель зависит от степени износа режущего инструмента. А она, в свою очередь, определяется текущим уровнем вибрации. Обученная нами нейросеть по величине энергии снимаемого датчиками вибрации сигналов определенных частот, предсказывает значение шероховатости при заданных параметрах режима резания. На ее основе мы разработали алгоритм, который, получив сигнал о достижении максимально допустимой величины шероховатости, изменит параметры подачи инструмента до подходящих показателей», — объясняет Владимир Онискив.
Политехники отмечают, что алгоритм выполняет условия оптимального управления, так как процесс обработки начинается с наиболее высокой величины подачи инструмента и постепенно снижается. Система обеспечивает максимально возможный объем съемного металла при заданной шероховатости поверхности, что значительно повышает производительность металлообработки.
Предложенный учеными ПНИПУ алгоритм уже апробировали на реальных данных и подтвердили возможность использования при разработке интеллектуальной информационной системы адаптивного управления процессом токарной обработки.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии