• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
11.10.2018
ФизТех
97

Математическая деформация времени помогла понять реальные квантовые системы

3.9

Ученые нашли способ классифицировать квантовые каналы при помощи деформации времени. Такая классификация поможет выделить квантовые системы с необычными и интересными свойствами.

Математическая деформация времени помогла понять реальные квантовые системы / ©lifehacker.ru

Специалист по математической физике Сергей Филиппов из МФТИ вместе с польским коллегой из Университета Коперника нашел способ классифицировать квантовые каналы при помощи деформации времени. Такая классификация поможет выделить квантовые системы с необычными и интересными свойствами.

Работа, опубликованная в журнале Physical Review A, посвящена анализу уравнений, описывающих поведение произвольной квантовой системы. В более строгой формулировке результат ученых — способ определить тип квантовых динамических отображений при помощи деформации времени. Что, в свою очередь, позволяет понять эффекты памяти в эволюции открытых квантовых систем и их проявления в реальных физических задачах вроде распространения сигнала по квантовым линиям связи и поведения кубитов в регистре квантового компьютера.Что изучали

Физики изучили уравнения, которые позволяют по начальному состоянию системы предсказать ее эволюцию: такая задача возникает в любом физическом исследовании. Анализ уравнений как таковых относится к «чистой математике», но уже неоднократно приводил к настоящим прорывам в физике как науке о материальных объектах.

Школьный пример: колебания маятника математически описываются теми же уравнениями, что и колебания электромагнитного поля в радиопередатчике или радиоприемнике. Математическая физика абстрагируется от природы процессов и изучает свойства уравнений как математических объектов: зачастую это оказывается крайне продуктивным подходом, обогащающим несколько разделов физики.

Ученые проанализировали квантовые кинематические уравнения для открытой системы. Квантовость означала, что описываемый уравнением объект подчиняется законам квантовой физики, поэтому может находиться сразу в нескольких состояниях (принцип суперпозиции), удовлетворять соотношению неопределенностей (когда нельзя одновременно точно измерить импульс с положением в пространстве) и демонстрировать другие «волшебные» явления.

Другое свойство — открытость — означало взаимодействие с миром. Открытые квантовые объекты со временем постепенно и необратимо приближаются к классическим (эффект декогеренции): это поведение называют марковским. Однако в случае сложного окружения динамика объекта может быть иной: квантовые эффекты сначала уменьшаются, а затем опять на некоторое время усиливаются. В этом случае говорят о немарковской квантовой динамике.

Рисунок 1. Мера различимости квантовых состояний — информационная характеристика, определяющая «квантовость» системы. Чаще всего различимость может лишь уменьшаться, но иногда — в немарковских случаях — она сначала уменьшается, а потом растет. На практике такой эффект приводит к неожиданным и иногда весьма полезным последствиям вроде внезапного увеличения качества сигнала при удлинении оптоволокна / Рисунок — Сергей Филиппов, пресс-служба МФТИ
Рисунок 1. Мера различимости квантовых состояний — информационная характеристика, определяющая «квантовость» системы. Чаще всего различимость может лишь уменьшаться, но иногда — в немарковских случаях — она сначала уменьшается, а потом растет. На практике такой эффект приводит к неожиданным и иногда весьма полезным последствиям вроде внезапного увеличения качества сигнала при удлинении оптоволокна / Рисунок — Сергей Филиппов, пресс-служба МФТИКвантовые каналы

Изменение квантовой системы описывается так называемым квантовым каналом. Это математическое отображение, которое можно представить в виде воображаемой трубки: система попадает туда в одном состоянии и выходит в другом. Для светового импульса, например, квантовый канал будет математическим представлением оптоволокна, но возможны и менее очевидные случаи.

Рисунок 2. Совокупность каналов для разных значений конечного времени t называют квантовым динамическим отображением / Иллюстрация — Сергей Филиппов, пресс-служба МФТИ
Рисунок 2. Совокупность каналов для разных значений конечного времени t называют квантовым динамическим отображением / Иллюстрация — Сергей Филиппов, пресс-служба МФТИ

Квантовое динамическое отображение тоже может быть марковским или немарковским — в соответствии с динамикой описываемой системы.

Рисунок 3. Слева квантовый канал для системы с марковской динамикой (той, где квантовость плавно уменьшается), его можно рассматривать в качестве последовательно соединенных частей. Для немарковского канала, когда система может обмениваться информацией с миром и квантовость способна не только уменьшаться, но и увеличиваться, такой прием уже не работает / Иллюстрация — Сергей Филиппов, пресс-служба МФТИ
Рисунок 3. Слева квантовый канал для системы с марковской динамикой (той, где квантовость плавно уменьшается), его можно рассматривать в качестве последовательно соединенных частей. Для немарковского канала, когда система может обмениваться информацией с миром и квантовость способна не только уменьшаться, но и увеличиваться, такой прием уже не работает / Иллюстрация — Сергей Филиппов, пресс-служба МФТИ

«Марковская квантовая динамика характеризуется тем, что в процессе такой динамики квантовая информация монотонно перетекает в окружение, то есть все время уходит и никогда не возвращается, — поясняет Сергей Филиппов, заведующий лабораторией квантовой теории информации МФТИ. — Если отдаваемая наружу информация способна возвращаться назад и мы не можем в отрыве от окружения рассматривать такой канал по частям, то динамика — немарковская».

Если представлять квантовые каналы в виде трубопроводов, то марковской динамике будет соответствовать обычный водопровод, а немарковской — стояк отопления, вода из которого отходит в радиатор и затем втекает обратно. В роли воды — информация, а в роли «батареи» — окружающая среда с квантово запутанными частицами.

«В случае слабой связи объекта с некоррелированным окружением квантовая динамика объекта хорошо описывается марковскими уравнениями движения. Именно эта ситуация чаще всего встречается на практике. Например, так можно описывать потери фотонов в оптоволокне, — рассказывает исследователь. — Квантовые отображения немарковского типа естественным образом возникают в том случае, когда квантовый объект сильно взаимодействует с окружением или окружение является сильно коррелированным: частицы образуют связи между собой, и их нужно рассматривать как единые квантовые системы. В оптике это может соответствовать ситуации, в которой фотоны взаимодействуют с коррелированными частицами внутри волновода. Подобное поведение уже обнаружено экспериментально; в будущем, при создании все более сложных квантовых систем, немарковская динамика будет встречаться чаще. Если эволюция объекта описывается немарковской квантовой динамикой, то можно наблюдать необычные и при этом полезные эффекты — например, увеличение когерентности, — которые уже пытаются использоваться при передаче квантовой информации. В этом заключается перспектива применения немарковских процессов на практике».Прием деформации времени

Ученые нашли «нефизическое» преобразование уравнений, которое позволяет лучше проявить важные особенности реальных физических систем и отличить марковскую динамику от немарковской.

Рисунок 4. Для немарковского процесса обязательно находится такой способ исказить ход времени, при котором квантовый канал «сломается»; марковские же сохранят свою структуру при любом замедлении или ускорении времени / Пресс-служба МФТИ
Рисунок 4. Для немарковского процесса обязательно находится такой способ исказить ход времени, при котором квантовый канал «сломается»; марковские же сохранят свою структуру при любом замедлении или ускорении времени / Пресс-служба МФТИ

«Физически мы, конечно, не можем ускорять или замедлять время произвольным образом так, чтобы это меняло всю физику системы. Даже в специальной теории относительности с характерным для нее замедлением времени все законы автоматически переписываются в том же самом виде при переходе от одной инерциальной системы отсчета в другую. Другими словами, хотя время и течет в разных системах отсчета по-разному, физика процесса не меняется. Мы же рассматриваем добавление в уравнения явно зависящего от времени множителя, что приводит к нефизической деформации времени в уравнении. Марковские процессы совсем не чувствительны к такой деформации, они по-прежнему соответствуют некой модифицированной, но физической эволюции. Однако для немарковских процессов деформация уравнений существенно изменяет решение: оно перестает быть физическим. Таким образом, деформация времени позволяет отделить марковские процессы от немарковских, а это уже реальная физика», — говорит Сергей Филиппов.

Исследование поддержано грантом Российского научного фонда.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 13:24
Алиса Гаджиева

Новое исследование проливает свет не только на происхождение коренного населения Уругвая, но и на разнообразие путей заселения Южной Америки.

1 час назад
Александр Березин

На планете уже зарегистрировано больше сотни случаев, подозрительно напоминающих обезьянью оспу — родственницу оспы натуральной. До 2022 года больные обезьяньей оспой заражались в основном от животных, а среди людей она быстро затухала, плохо передаваясь воздушно-капельным путем. Но в мае 2022 года положение могло измениться. Дюжина стран на разных континентах показала одновременную вспышку заражений. Многие пытаются успокоить население, упирая на факт, что прививка от обычной оспы защищает и от новой. Но на самом деле ситуация далеко не такая простая, и ВОЗ в эту пятницу уже провела чрезвычайную встречу экспертов для обсуждения этой болезни. Naked Science рассказывает о том, может ли оспа стать «сменщиком» коронавируса.

Вчера, 16:36
Мария Азарова

Ученые предупреждают: поскольку вес современных комбайнов и прочей сельхозтехники сегодня приближается к весу самых крупных животных, когда-либо бродивших по Земле, возникает парадокс уплотнения грунта.

14 мая
Василий Парфенов

Космическую компанию Илона Маска в шутку иногда называют пиротехнической — так часто ее изделия взрываются во время испытаний. Пара свежих инцидентов на тестовом полигоне в городе Макгрегор лишь подтверждают эту славу. Не успели фанаты космонавтики наладить онлайн-трансляцию из этой локации, как запечатлели сразу два взрыва подряд с промежутком всего в десятки часов.

18 мая
НИУ ВШЭ

В рамках международного проекта при участии Роскосмоса и Европейского космического агентства ученые впервые проанализировали данные, полученные с помощью диффузионной магнитно-резонансной томографии с трактографией головного мозга космонавтов. Исследователи увидели существенные изменения в связях между различными отделами головного мозга, причем некоторые изменения сохранялись даже спустя семь месяцев после возвращения на Землю.

Позавчера, 13:24
Алиса Гаджиева

Новое исследование проливает свет не только на происхождение коренного населения Уругвая, но и на разнообразие путей заселения Южной Америки.

26 апреля
Василий Парфенов

Крупнейшие патентные ведомства мира десятилетиями или веками принципиально игнорируют любые конструкции, нарушающие начала термодинамики. С точки зрения здравого смысла это хорошо, но конспирологи и гении-самоучки считают иначе. По их мнению, такая политика стала результатом заговора (подставьте сюда любое вымышленное или не очень секретное общество либо лобби). Что ж, похоже, Роспатент встал на их сторону.

27 апреля
Александра Медведева

С помощью GPS-трекинга ученые проследили за перемещениями целой популяции домашних кошек в небольшом норвежском городке. Оказалось, питомцы редко уходят от дома далее 50 метров и почти не совершают длительных прогулок.

28 апреля
Мария Азарова

Авторы нового исследования составили таблицу ожидаемой продолжительностью жизни для собак 18 чистокровных пород и метисов. Кроме того, они узнали, кто живет дольше — суки или кобели, кастрированные или нет.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: