Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект обучили определять динамику городского острова тепла
Городской остров тепла — проблема, привлекающая все больше внимания. Этот термин обозначает превышение температуры в городе по отношению к пригороду. В крупных мегаполисах разность может превышать 10 градусов. Ученые МФТИ, Института океанологии РАН и НИВЦ МГУ обучили искусственный интеллект моделированию динамики разности температуры между Москвой и Подмосковьем, что позволило исследовать закономерности и причины изменения. Результаты показали, что тенденция усиления острова тепла, наблюдаемая за последние 50 лет, связана в первую очередь с ростом мегаполиса. При этом дополнительно эту тенденцию усиливает изменение регионального климата, который становится более благоприятным для их появления.
Результат исследования был опубликован в журнале Climate. Исследование выполнено при поддержке Некоммерческого фонда развития науки и образования «Интеллект». Повышение температуры в загруженных районах города увеличивает тепловой стресс для жителей, а также может приводить к усилению процессов конвекции (теплопередачи) и связанных с ними опасных погодных явлений, включая интенсивные осадки и грозы. Таким образом, точные данные об острове тепла важны для различных практических приложений: от прогнозирования погоды до управления городской окружающей средой и адаптации к изменению климата.
«Городские острова тепла весьма опасны в периоды летней жары, которые из-за глобального изменения климата стали наблюдаться и в Москве, например в 2010 году. В то же время этот эффект до сих пор недостаточно детально учитывается в моделях прогноза погоды и климата. Это и привело нас к созданию концепции исследования. Мы использовали несколько моделей машинного обучения, чтобы на основе данных о среднем состоянии атмосферы в Московском регионе определять, какой будет остров тепла в центре столицы — какова будет разность между центром и областью.
Наши статистические модели уже могут воспроизвести суточный (днем разность ослабевает) и сезонный ход острова тепла, а также зависимость от синоптических условий — в условиях антициклонов эффект усиливается, а при сильном ветре и дожде его практически нет», — рассказал об исследовании Михаил Варенцов, старший научный сотрудник лаборатории суперкомпьютерного моделирования природно-климатических процессов НИВЦ МГУ, победитель конкурса грантов для молодых ученых фонда «Интеллект».
Современные гидродинамические модели атмосферы в сочетании с параметризацией городской поверхности способны воспроизвести большинство метеорологических эффектов и регулярно используются в численном прогнозировании погоды для региональных оценок теплового стресса и уточнения сценариев изменения климата. Однако такие модели требуют больших вычислительных ресурсов и сложной программно-аппаратной инфраструктуры и обычно запускаются на суперкомпьютерах, что весьма энергозатратно.
Альтернативой для прогнозирования могут стать более простые в использовании статистические модели, но они не имеют явной физической основы и требуют перенастройки для каждого города. Новый этап развития статистического моделирования метеорологических переменных связан с быстрым распространением методов машинного обучения, которые набирают все большую популярность в науках о Земле. Машинное обучение уже нашло свое применение в городской метеорологии, в первую очередь в задачах детального картирования температуры. Однако гораздо меньше исследований сфокусировано на временной изменчивости городских аномалий температуры и других метеовеличин. Кроме того, вопросы сравнения различных моделей и выбора лучших из них остаются неизученными.
«Наше исследование направлено на более глубокое изучение возможностей и ограничений современных моделей машинного обучения в городской метеорологии. Это первый шаг к решению задачи повышения разрешения результатов моделирования атмосферы для городов. Глобальные модели прогноза погоды и климата имеют шаг сетки в первые десятки километров, что не позволяет учесть влияние городов. Чтобы исправить это, применяются региональные гидродинамические модели атмосферы, а это довольно долгий и затратный процесс.
Мы продемонстрировали, что модели машинного обучения имеют большой потенциал для улучшения качества моделирования температуры в городах. В дальнейшем мы планируем научить их воспроизводить не только временную, но и пространственную изменчивость острова тепла, что позволит использовать их как альтернативу гидродинамическим моделям в ряде задач. Успех нашей работы во многом обусловлен продуктивной коллаборацией Физтеха, институтов РАН и МГУ», — рассказал о проекте Михаил Криницкий, старший научный сотрудник Института океанологии РАН, заведующий лабораторией машинного обучения в науках о Земле МФТИ.
В ходе работы группа ученых использовала долгосрочные метеорологические наблюдения московского региона и применила несколько статистических моделей машинного обучения, начиная от классической линейной регрессии и до разработанного в «Яндексе» алгоритма CatBoost, который показал лучшие результаты. Модели обучались на наборе данных за 21 год (2001–2021 годы) и научились успешно воспроизводить суточные, синоптические и сезонные вариации острова тепла. Однако за более длительный период (1977–2023 годы) модели не способны полностью воспроизвести наблюдаемую тенденцию увеличения разницы температур между Москвой и Подмосковьем, подтверждая, что эта тенденция в значительной степени (на 60–70 процентов) обусловлена ростом мегаполиса.
«Распространение загрязнений в атмосфере в некотором смысле связано с эффектом городского острова тепла. Более детальный учет этого явления положительно скажется на точности моделирования качества воздуха. Кроме того, технология, которую мы пока тестируем только на тепловом загрязнении, может быть в дальнейшем эффективно использована для построения модели загрязнения воздуха различными вредными примесями и влияния других антропогенных факторов на климат», — заключил Михаил Варенцов.
В Мурманской области не добывают золото: его месторождений здесь пока не нашли. Впрочем, сообщения о находках этого металла датируются еще XVIII веком. Геологам также известны в Кольском регионе рудопроявления золота — минеральные тела, содержащее драгоценный металл в ассоциации с другими минералами, характерными для промышленных руд, но в таком количестве, что при нынешнем развитии экономики и технологий добывать его нерентабельно. Чтобы обнаружить в Кольском Заполярье месторождения золота, необходимы новые исследования. Ученые Геологического института Кольского научного центра провели их и узнали о природе местных рудопроявлений.
Ученые Санкт-Петербургского государственного университета в составе научной группы выявили ген, который позволил арахису стать природным ГМО и адаптироваться к изменяющимся условиям окружающей среды.
Американские биологи впервые провели анатомический анализ лицевых мышц койотов и обнаружили у этих хищников мышцы, которые позволяют домашним собакам строить «щенячий взгляд». Гипотетически этот признак возник при одомашнивании, но авторы новой научной работы опровергли эту версию. Вдобавок исследователи обнаружил мышцу-пучок, которая позволяет койотам щуриться.
Международная исследовательская группа смогла прорастить семя древнего дерева из рода коммифора (Commiphora), найденного в пещере Иудейской пустыни в 1980-х годах. Ученые предположили, что это растение упоминается в библейских текстах. История семени, пролежавшего в земле почти тысячу лет, не только впечатляет, но и открывает новые возможности для изучения древней флоры засушливого региона.
Натуральные, или счетные, числа обозначают количество чего-либо или порядковый номер предмета относительно других. Ноль, не относящийся к натуральным числам, кодирует пустоту, отсутствие каких бы то ни было предметов. Однако человеческий мозг реагирует на него как на очень маленькое число, обнаружили ученые из Германии.
Уголь – один из главных источников производимой электроэнергии во всем мире. В то время как запасов природного газа и нефти хватит на 40–60 лет, а уранового топлива – на 80–90, угля достаточно на тысячи лет. Но есть одна проблема: его использование наносит серьезный вред экологии. Это и выброс парниковых газов (CO2, СН4), а также SOx, NOx и твердых частиц при его сжигании, и загрязнение почвы и подземных вод в зоне складирования отходов. Однако белорусские ученые считают, что за этим видом топлива будущее, и знают, как сделать использование угля безопасным для природы.
Марс не всегда был холодным и сухим, как сейчас. Все больше фактов говорит о том, что миллиарды лет назад там текли водные потоки. А значит, была плотная атмосфера, создающая парниковый эффект и поддерживающая воду в жидком состоянии. Примерно 3,5 миллиарда лет назад вода исчезла, газовая оболочка существенно поредела. Почему? Ответ буквально лежит на поверхности, выяснили американские геологи.
Французские исследователи проанализировали тысячи спутниковых снимков поверхности Антарктиды и выяснили, что почти весь континент покрывают продольные дюны — такой рельеф часто встречается на спутнике Сатурна Титане. Ученые также узнали, какие ветры формируют антарктические дюны, и нашли противоречие, раскрывающее детали климата на континенте.
Инженеры из Белоруссии разработали альтернативный маршрут для более быстрой, безопасной и доступной перевозки грузов по сравнению с использованием Северного морского пути (СМП). Проект предусматривает организацию высокоскоростных грузопассажирских перевозок, в том числе транзитных, что станет альтернативой другим видам транспорта, в первую очередь авиации, за счет высокой скорости передвижения и уровня комфорта.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии