Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект обучили определять динамику городского острова тепла
Городской остров тепла — проблема, привлекающая все больше внимания. Этот термин обозначает превышение температуры в городе по отношению к пригороду. В крупных мегаполисах разность может превышать 10 градусов. Ученые МФТИ, Института океанологии РАН и НИВЦ МГУ обучили искусственный интеллект моделированию динамики разности температуры между Москвой и Подмосковьем, что позволило исследовать закономерности и причины изменения. Результаты показали, что тенденция усиления острова тепла, наблюдаемая за последние 50 лет, связана в первую очередь с ростом мегаполиса. При этом дополнительно эту тенденцию усиливает изменение регионального климата, который становится более благоприятным для их появления.
Результат исследования был опубликован в журнале Climate. Исследование выполнено при поддержке Некоммерческого фонда развития науки и образования «Интеллект». Повышение температуры в загруженных районах города увеличивает тепловой стресс для жителей, а также может приводить к усилению процессов конвекции (теплопередачи) и связанных с ними опасных погодных явлений, включая интенсивные осадки и грозы. Таким образом, точные данные об острове тепла важны для различных практических приложений: от прогнозирования погоды до управления городской окружающей средой и адаптации к изменению климата.
«Городские острова тепла весьма опасны в периоды летней жары, которые из-за глобального изменения климата стали наблюдаться и в Москве, например в 2010 году. В то же время этот эффект до сих пор недостаточно детально учитывается в моделях прогноза погоды и климата. Это и привело нас к созданию концепции исследования. Мы использовали несколько моделей машинного обучения, чтобы на основе данных о среднем состоянии атмосферы в Московском регионе определять, какой будет остров тепла в центре столицы — какова будет разность между центром и областью.
Наши статистические модели уже могут воспроизвести суточный (днем разность ослабевает) и сезонный ход острова тепла, а также зависимость от синоптических условий — в условиях антициклонов эффект усиливается, а при сильном ветре и дожде его практически нет», — рассказал об исследовании Михаил Варенцов, старший научный сотрудник лаборатории суперкомпьютерного моделирования природно-климатических процессов НИВЦ МГУ, победитель конкурса грантов для молодых ученых фонда «Интеллект».
Современные гидродинамические модели атмосферы в сочетании с параметризацией городской поверхности способны воспроизвести большинство метеорологических эффектов и регулярно используются в численном прогнозировании погоды для региональных оценок теплового стресса и уточнения сценариев изменения климата. Однако такие модели требуют больших вычислительных ресурсов и сложной программно-аппаратной инфраструктуры и обычно запускаются на суперкомпьютерах, что весьма энергозатратно.
Альтернативой для прогнозирования могут стать более простые в использовании статистические модели, но они не имеют явной физической основы и требуют перенастройки для каждого города. Новый этап развития статистического моделирования метеорологических переменных связан с быстрым распространением методов машинного обучения, которые набирают все большую популярность в науках о Земле. Машинное обучение уже нашло свое применение в городской метеорологии, в первую очередь в задачах детального картирования температуры. Однако гораздо меньше исследований сфокусировано на временной изменчивости городских аномалий температуры и других метеовеличин. Кроме того, вопросы сравнения различных моделей и выбора лучших из них остаются неизученными.
«Наше исследование направлено на более глубокое изучение возможностей и ограничений современных моделей машинного обучения в городской метеорологии. Это первый шаг к решению задачи повышения разрешения результатов моделирования атмосферы для городов. Глобальные модели прогноза погоды и климата имеют шаг сетки в первые десятки километров, что не позволяет учесть влияние городов. Чтобы исправить это, применяются региональные гидродинамические модели атмосферы, а это довольно долгий и затратный процесс.

Мы продемонстрировали, что модели машинного обучения имеют большой потенциал для улучшения качества моделирования температуры в городах. В дальнейшем мы планируем научить их воспроизводить не только временную, но и пространственную изменчивость острова тепла, что позволит использовать их как альтернативу гидродинамическим моделям в ряде задач. Успех нашей работы во многом обусловлен продуктивной коллаборацией Физтеха, институтов РАН и МГУ», — рассказал о проекте Михаил Криницкий, старший научный сотрудник Института океанологии РАН, заведующий лабораторией машинного обучения в науках о Земле МФТИ.
В ходе работы группа ученых использовала долгосрочные метеорологические наблюдения московского региона и применила несколько статистических моделей машинного обучения, начиная от классической линейной регрессии и до разработанного в «Яндексе» алгоритма CatBoost, который показал лучшие результаты. Модели обучались на наборе данных за 21 год (2001–2021 годы) и научились успешно воспроизводить суточные, синоптические и сезонные вариации острова тепла. Однако за более длительный период (1977–2023 годы) модели не способны полностью воспроизвести наблюдаемую тенденцию увеличения разницы температур между Москвой и Подмосковьем, подтверждая, что эта тенденция в значительной степени (на 60–70 процентов) обусловлена ростом мегаполиса.
«Распространение загрязнений в атмосфере в некотором смысле связано с эффектом городского острова тепла. Более детальный учет этого явления положительно скажется на точности моделирования качества воздуха. Кроме того, технология, которую мы пока тестируем только на тепловом загрязнении, может быть в дальнейшем эффективно использована для построения модели загрязнения воздуха различными вредными примесями и влияния других антропогенных факторов на климат», — заключил Михаил Варенцов.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Объединить конфликтующие свойства помогли квазичастицы со специфическим зарядом. Если удастся подтвердить предложенную теорию экспериментом, то перед нами — новый тип квантовых материалов.
В России существуют тысячи рабочих мест с вредными и опасными условиями труда. На шахтах, металлургических заводах, в авиастроении люди годами находятся в условиях сильного шума, вибрации, запыленности и контакта с химикатами, что наносит серьезный ущерб здоровью. Однако существующие методы оценки рисков оказываются неэффективными для прогнозирования заболеваний, поскольку работают с усредненными показателями группы, а обязательные медосмотры определяют уже наступившую болезнь. Такая система лечит последствия, но не предотвращает причину. Ученые Пермского Политеха, управления Роспотребнадзора и ФНЦ медико-профилактических технологий управления рисками здоровью населения разработали программу, которая прогнозирует индивидуальные профессиональные риски здоровью для каждого конкретного работника с точностью 89%.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.
Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
