Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики создали модель коацервации полимеров
Коацервация — процесс, при котором полимер из раствора сгущается в маленькие нерастворимые капельки. Этот простой, но эффективный способ работы с полимерами широко распространен. Его применяют при производстве лекарств, соусов и даже жидкости для снятия макияжа. Физики МИЭМ ВШЭ создали теоретическую модель коацервации в растворах полибетаинов, предсказывающую, при каких условиях она пройдет успешно. Результаты позволят химикам эффективнее проводить синтез подходящих для коацервации полимеров.
Исследование опубликовано в журнале Soft Matter. Раствор полимера можно представить как смесь воды и вещества, которое может образовывать специальные плотные структуры. При изменении условий, например pH (уровень кислотности/щелочности среды) или температуры, раствору становится термодинамически невыгодно находиться в однородном состоянии, и он разделяется. Полимер внутри раствора сворачивается и формирует небольшие частицы, отдельные от раствора. В результате образуются две жидкие части: частицы, богатые веществом, и растворитель с практически нулевой концентрацией полимера. Частицы — коацерваты — остаются в среде в нерастворимом виде и напоминают медуз, плавающих в морской воде.
Коацерваты с нами очень давно: согласно теории Опарина — Холдейна, именно в коацерватных каплях зародилась первая жизнь на Земле. Сейчас областей применения коацерватов множество, они окружают нас повсеместно. В фармацевтике благодаря коацервации создают пленки, которые защищают активное вещество лекарства от окружающей среды и помогают ему высвободиться только на нужном этапе. Коацерваты используют в жидкостях для снятия макияжа, а также в лосьонах, кондиционерах и шампунях. В пищевой промышленности их применяют при производстве соусов и йогуртов: коацерваты образуются внутри продукта и помогают создать однородные стабильные смеси.
Команда исследователей МИЭМ ВШЭ разработала теоретическую модель, которая предсказывает наиболее подходящие параметры для коацервации полимеров — веществ, состоящих из многократно повторяющихся одинаковых структурных звеньев. Модель следует основным принципам физики макромолекул и учитывает, насколько полимерные цепочки длинные и с какой силой притягиваются друг к другу.
Исследователи построили модель коацервации молекул полибетаина. Это соединения с цвиттер-ионной структурой, при которой у звеньев полимерной цепи есть одновременно положительно и отрицательно заряженные центры. Полибетаины очень чувствительны к температуре при коацервации, поэтому, чтобы провести синтез эффективнее, размером и плотностью капель нужно управлять, меняя незначительно температуру в диапазоне 18–20 градусов.
В своей работе ученые рассмотрели растворы с различной концентрацией полибетаина и описали, какие температуры будут оптимальны. Дополнительно ученые рассчитали поверхностное натяжение коацервата — показатель того, насколько поверхность образовавшегося коацервата устойчива.
Капелька в растворе состоит из полимеров с большими дипольными моментами — произведением абсолютной величины зарядов ионных групп на их относительное расстояние. И если в раствор добавить другие полимеры с высокой полярностью или зарядом, то они будут притягиваться к капле за счет электростатических сил.
«Коацерват, как маленький магнит, притягивает к себе молекулы, которые сильно с ним взаимодействуют, и, как губка, впитывает их. Можно использовать эти капли как ловушки, захватывающие определенные типы белков и аминокислот. В частности, капельки полибетаинов могут отфильтровывать в растворе биополимеры — белки и аминокислоты», — поясняет автор статьи, профессор МИЭМ ВШЭ Юрий Будков.
Также эти данные можно использовать для более эффективного синтеза полимеров. Химики на основе модели смогут задать оптимальные расчетные значения молекулярных свойств полимеров и получить макромолекулы, наиболее подходящие для последующей коацервации. Важно, что теоретическая модель ученых уже подтверждается независимыми экспериментальными данными их коллег.
«Когда статья готовилась к публикации, мы нашли недавно опубликованное исследование, подтверждающее наши теоретические модели коацервации уже экспериментально. И результаты совпадают с нашими расчетными параметрами расстояния между заряженными центрами, размера мономерного звена и так далее, — поясняет научный сотрудник МИЭМ ВШЭ Петр Брандышев. — Оказалось, что наша теория предсказывает образование коацерватов именно в той области температур, которые наблюдаются в реальных водных растворах полибетаинов. Важно, что не только теория предсказывает сам эффект, но и наши расчеты подтверждаются экспериментально».
Третий в истории наблюдений объект из другой звездной системы 3I/ATLAS произвел впечатление своей активностью и необычным химическим составом. Астрофизики пришли к выводу, что это последствия миллиардов лет воздействия на комету космических лучей.
8 ноября жители России смогут наблюдать редкую «хвостатую странницу» — комету C/2025 A6 (Леммон), чей следующий визит состоится лишь через тысячелетие. В этот вечер небесное тело достигнет пика яркости, став доступным для просмотра невооруженным глазом. О том, как найти «странницу» на небе и что делает ее одной из главных комет года — рассказал эксперт Пермского Политеха.
В данных космического телескопа «Джеймса Уэбба» ученым удалось отыскать самых многообещающих кандидатов на роль первых звезд. Эти светила, сформировавшиеся из первичного газа, существенно изменили химический состав молодой Вселенной, заложив основу для будущего многообразия, включая планеты и жизнь. Если исследователи действительно сумели найти такие древние объекты, это откроет новую страницу в наблюдательной астрономии.
Третий в истории наблюдений объект из другой звездной системы 3I/ATLAS произвел впечатление своей активностью и необычным химическим составом. Астрофизики пришли к выводу, что это последствия миллиардов лет воздействия на комету космических лучей.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
