• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
13.04.2018, 09:26
Редакция Naked Science
1
511

Ученые смогли наблюдать за лабораторными животными без установки меток

Разработана система автоматического отслеживания перемещений и движений лабораторных животных, для которой не требуется установка меток.

14-0
©Wikipedia / Автор: Godefridus Victorinus

Американские и немецкие ученые совместно разработали систему автоматического слежения за лабораторными животными — DeepLabCut. Теперь исследователи следят за перемещениями и действиями подопытных, не ставя на них метки.

 

Традиционно видеонаблюдение дает много материала для научной работы с животными, но и занимает достаточно времени. Просмотр записей — длительная процедура, которую не всегда можно ускорить. Отличать животных друг от друга трудно, и на них приходится ставить метки. Если пометить крысу цветными пятнами легко, то с мелкими насекомыми возникает проблема. Кроме того, животные стирают метки.

 

Проблема распознавания отдельных особей с маркерами давно решена, также используют тепловые сигнатуры — они хорошо подходят для крупных животных на свободе. Если же эксперимент требует следить за отдельными конечностями или другими частями животного, то задача многократно усложняется. Сам ученый легко распознает детали на видео, но вынужден просматривать записи в реальном времени. Для автоматического распознавания движений пальцев метки придется ставить очень тесно. Крепления при этом сложно сделать надежно, так как животные будут их грызть.

 

Коллектив ученых во главе с Маттиасом Бетге (Matthias Bethge) отказался от меток, решив использовать нейросети. Метод прост: снимки размечают вручную с указанием точек, которые затем отслеживает программа. Нейросеть обучают, и она определяет для каждого пикселя изображения вероятность появления соответствующей части тела с учетом положения животного в пространстве. Число снимков, которые нужно разметить вручную, невелико: уже со ста система работает уверенно, исследователи рекомендуют для надежности разметить 200 кадров.

 

Ученые использовали сверточную нейронную сеть (convolutional neural network, CNN), строение которой аналогично работе зрительной коры человека. Поэтому такая архитектура сети хорошо подходит для распознавания образов. Специалисты дополнительно применили метод глубокого обучения (deep learning) с использованием технологии DNN (Deconvolutional Neural Networks). Параметры и фильтры, сформированные в процессе обучения CNN, используют для первичной обработки сигналов, что улучшает распознавание объектов.

 

Специалисты провели два эксперимента на мышах и один на дрозофилах.

 

Бег грызуна по бумажной катушке с «нарисованной» запахом дорожкой изучали при первом опыте. Видеозапись специально осложняли помехами: неоднородное освещение, динамические тени от животного, искажения от широкоугольного объектива. Во время бега мышь часто пересекала след и поворачивала.

 

Для опыта использовали семь мышей. Съемку вели две камеры, 640×480 и 1700×1200 пикселей, с частотой 30 Гц.  Кадры с высоким разрешением чрезмерно велики для обработки, поэтому их обрезали до размера 800×800 пикселей вокруг изображения мыши. Ученые взяли 1080 случайных кадров из разных съемок и проставили метки на морду, кончики ушей и основание хвоста.

 

На видео зеленые и голубые точки показывают 30 будущих и прошлых позиций морды с периодичностью в 33,3 миллисекунды. Пурпурные ромбы обозначают расположение тела и морды с ушами в прошлом. Вместе эти четыре точки определяют направление тела и головы мыши. Дорожка с запахом нарисована серым цветом.

 

Мониторинг движения мыши по запаховому следу / © A. Mathis, Murthy Lab (Harvard University)

 

При втором исследовании отслеживали движения передней лапки мыши. Предварительно зверьков научили за вознаграждение тянуть специальный рычаг. Метки при таком наблюдении использовать практически невозможно.

 

В эксперименте использовали пять мышей. Съемка велась на камеру с разрешением 2048×1088 пикселей и частотой 100-320 кадров в секунду. Исследователи разметили 159 кадров, на каждом пальце было по четыре метки: на кончике, межфаланговом и пястно-фаланговом суставах, основании запястья. Изображение обрезали до области, содержащей нужное движение. Видео наглядно демонстрирует возможности метода.

 

Мониторинг движения передней лапы мыши при тяге за рычаг / © A. Mathis, Murthy Lab (Harvard University)

 

Третий опыт — мониторинг поведения дрозофил во время яйцекладки. В этом случае нанесение меток крайне затруднительно из-за размера мушек. На кадрах разметили 12 точек: четыре на голове, семь на тельце и одну на яйцекладке. Метод отлично работал и в этом случае.

 

Вычисления каждого эксперимента требовали около полумиллиона шагов обучения нейросети, что заняло от 24 до 36 часов работы видеокарты NVIDIA GTX 1080 Ti.

 

Ученые выложили программу вычислений в свободный доступ.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
3 декабря, 09:56
Александр Березин

Человеческие эмбрионы до восьми недель способны полностью восстанавливать повреждения, как аксолотли. Но потом организм выключает гены, которые позволяют это делать — и наука пока не знает почему. Но она уже пытается вернуть такую возможность взрослым. И хотя масштаб задачи огромен, кое-чего ученым из России уже удалось добиться. Причем это не только имплантаты, но и биофабрикация живых тканей на замену утраченным.

3 декабря, 11:53
Максим Абдулаев

Австралийские археологи обнаружили редкий клад каменных орудий на западе штата Квинсленд. В яме на берегу пересыхающего водоема лежали 60 совершенно новых тесел, изготовленных в XIX веке. Ученые установили, что это был «торговый пакет», подготовленный для обмена в экономической сети аборигенов. Владелец не смог забрать ценный груз, вероятно, из-за конфликта с европейскими поселенцами.

1 декабря, 13:33
КАИ

В Передовой инженерной школе КНИТУ-КАИ (ПИШ КАИ) действуют временные научные коллективы (ВНК), работающие над реальными инженерными задачами. Одним из наиболее ярких результатов стала работа ВНК-4, созданного для развития технологий в области легких авиационных систем. Проект реализуется под руководством Никиты Сёмина, который также возглавляет специальное образовательное пространство (СОП) ПИШ КАИ «Авиамоделирование».

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

27 ноября, 20:20
Максим Абдулаев

Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.

27 ноября, 11:05
Игорь Байдов

Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

27 ноября, 20:20
Максим Абдулаев

Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

[miniorange_social_login]

Комментарии

1 Комментарий
perfect_genius
17.05.2018
-
0
+
"строение которой аналогично работе зрительной коры человека" Но это неточно.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно