Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ создали материал на основе наночастиц золота, который изменит оптику и энергетику
Российские исследователи из ЮФУ и РХТУ сделали важный шаг в развитии фотоники, создав и изучив свойства уникального материала с аномально широкой полосой локализованного поверхностного плазмонного резонанса. Основой разработки стали наночастицы золота, сформированные внутри стекла. Новые свойства материала открывают широкие перспективы для создания высокоэффективных устройств, включая солнечные батареи.
Плазмонный резонанс — явление, которое используется в фотонных приборах. Сейчас почти вся техника работает на электронах в полупроводниковых материалах. Идея фотоники — заменить полупроводниковые технологии фотонными, то есть вместо управления электронами, текущими по полупроводниковым схемам, перейти к управлению фотонами. Это сложнее, но выгода может быть невероятной — как по скорости работы такого устройства, так и по его энергоэффективности.
Также эффект плазмонного резонанса используется в различных биомедицинских датчиках. Но как работает плазмонный резонанс? При воздействии света на наночастицу металла возникают колебания электронной плотности внутри вещества. Под воздействием поля электромагнитной волны свободные электроны в металле смещаются в его сторону. При этом электроны притягивают обратно положительно заряженные частицы, и происходит колебание. Частица такого колебания и называется плазмоном.
Как и у любого колебания, у плазмонных колебаний существует резонансная частота, и при определенной частоте волны возникает резонанс, который выражается в резком усилении поглощения металлом света определенной частоты. При этом частота и характер резонанса может меняться при изменении формы и размера наночастиц, а также при «окружении» их диэлектриком — например, стеклом.
Ученые Южного федерального университета вместе с исследователями Российского химико-технологического университета разработали и изучили материал с очень широкой полосой поверхностного плазмонного резонанса — более 1000 нанометров. Это означает, что материал способен поглощать волны в широком спектре частот.
Это наночастицы золота, осажденные на особо чистом стекле на основе оксидов цинка, алюминия и кремния. К тому же было выяснено, что полосу резонанса можно очень точно варьировать (изменять по ширине и «сдвигать» в разные стороны спектра), меняя температуру при синтезе. Исследователи предполагают, что такая аномальная ширина полосы плазмонного резонанса вызвана связью между частицами, которая возникает при разделении фаз термически обработанного стекла.

Новый материал может быть применим в фотонике, биомедицине, а также может использоваться в солнечной энергетике для сбора энергии, приходящей от Солнца в широком интервале длин волн. Он будет способен запасать энергию и отдавать ее на другие элементы — солнечные батареи и нагревательные элементы. Ключевой момент здесь — прозрачность материала.
«В нашем материале в прозрачной матрице стекла присутствуют наночастицы золота, причем эти наночастицы спонтанно формируют группы, и это приводит к появлению необычных свойств — очень широкого диапазона поглощения», — рассказывает доктор физико-математических наук, профессор кафедры теоретической и вычислительной физики ЮФУ Леон Авакян. Исследование, результаты которого опубликованы в журнале Ceramics, поддержано грантами Российского научного фонда.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.
Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно