Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые визуализировали «форму» многомерных данных
Исследователи из Сколтеха и Института искусственного интеллекта AIRI представили метод визуализации, который в отличие от существующих аналогов делает сложные биомедицинские, финансовые и иные данные доступными человеку с сохранением многомерной структуры датасета. Потеря этой так называемой топологии датасета не позволяет делать полезные выводы из данных, будь то раковые гены, поведение потребителей или что-то еще.
Исследование опубликовано в числе проектов, представленных на мероприятии уровня A* — Международной конференции по обучению представлений ICLR 2023. Аналитики компаний и ученые часто имеют дело с базами данных, в которых каждый элемент наделен признаками сразу во многих измерениях. Скажем, банк может использовать широкий круг показателей для описания поведения каждого клиента. Биологи могут сравнивать клетки разных типов с точки зрения того, насколько в них активен каждый из длинного списка генов. Данные по погоде тоже отличаются большим количеством измерений, потому что значения многих параметров фиксируются или предсказываются для множества моментов времени и точек пространства.
При этом людям непривычно мыслить в многомерном пространстве, и если не снизить размерность датасета и не получить его удобное двух- или трехмерное представление, то может быть крайне трудно обнаружить в данных важные закономерности или выдвинуть на основе них продуктивную гипотезу.
«Если данные визуализировать, то они станут интуитивно доступными, осязаемыми, но мы не обязательно увидим их реальную „форму“ — ведь у датасета может быть структура большого масштаба, с кластерами, пустотами, петлями, и хотелось бы, чтобы все это нашло отражение и в представлении пониженной размерности. Тогда физик увидит на визуализации сигналы отдельных частиц, маркетолог — разные группы потребителей, а климатолог — начало и конец интересующего его процесса. Наш метод снижения размерности отличается от аналогов как раз тем, что не жертвует глобальной структурой данных», — поясняет один из авторов исследования, выпускник Сколтеха и сотрудник AIRI Даниил Чернявский.
Существуют разные подходы к снижению размерности данных. Некоторые из них используют автоэнкодеры — нейросети, создающие представления данных в меньшем количестве измерений. «Проблема в том, что большинство методов, в том числе с автоэнкодерами, работают, что называется, локально. То есть учитывают положение каждой точки относительно ближайших соседей, но в целом игнорируют крупномасштабную структуру датасета, — добавляет Чернявский. — Мы же снабдили автоэнкодер дополнительной новой функцией лосса, которая служит тому, чтобы свести к минимуму различие в топологии между исходным датасетом и его представлением сниженной размерности. Когда лосс равен нулю, „форма“ визуализации гарантированно совпадает с исходной».
Ученые с использованием нескольких метрик оценили, насколько хорошо предложенный метод воспроизводит топологию датасета по сравнению с другими популярными методами снижения размерности данных. Для проверки использовались датасеты разного наполнения и метрики, которые отражают сохранение взаимного расположения точек в целом, а не только тех, что находятся в непосредственной близости друг от друга. Метод авторов исследования повторил исходную «форму» данных лучше всего (см. иллюстрацию).
«Топологический анализ обретает все большую популярность как инструмент исследования многомерных данных. Мы рассчитываем, что скоро предложенный нами и другие подобные методы станут признанным стандартом», — считает соавтор исследования профессор Евгений Бурнаев из Центра прикладного искусственного интеллекта Сколтеха и AIRI.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Кто из нас не видел кадры с огненными полосами в небе при разрушении спутников, сошедших с орбиты? Или обгорелые бока спускаемых аппаратов, доставивших экипажи космонавтов на Землю? Вход боеголовок межконтинентальных баллистических ракет в атмосферу видят значительно реже; на фотографиях он тоже запечатлен в виде огненных линий в небе. Что же это за огонь в небе и как он возникает? Распространенный в массовом сознании стереотип объясняет его трением об воздух. Но это лишь миф. Причина огня и механизм его появления другие.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Испанские исследователи проанализировали популярные в соцсетях фото и видео с дикими животными, сгенерированные с помощью искусственного интеллекта. Специалисты пришли к выводу, что такого рода реалистичные, но фейковые материалы способны навредить как людям, так и животному миру, поскольку они вводят в заблуждение и подрывают усилия по сохранению дикой природы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно