Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Создана универсальная модель формирования мнений в социальных сетях
Ученый МФТИ и Института проблем управления РАН разработал оптимальную модель формирования мнений, которая позволяет отследить и прописать вероятность изменения мнения пользователей в ответ на получаемую информацию из социальных сетей. Понимание процессов динамики мнений важно во многих областях, включая политику, бизнес и маркетинг.
Результаты работы опубликованы в журналах Scientific Reports и Advances in Systems Science and Applications. Социальные сети радикально изменили традиционные каналы передачи информации. Теперь каждый из нас может создать свою собственную информационную среду, выбирая, кого читать и к какому мнению прислушиваться. В результате именно социальные сети стали платформой для процессов социального влияния. Они представляют не только пространство для общения, но и влияют на то, с кем и как мы общаемся и делают это достаточно предвзято.
Причина кроется в алгоритмах ранжирования, именно с помощью них организуется информационное пространство вокруг пользователей, рекомендуется контент и потенциальные друзья. В итоге не мы, а системы выходят на главную роль, определяя наше окружение и подсказывая, какой информации следует отдать приоритет. Более того, благодаря этой оптимизации возможно изолировать пользователей от неудобной информации, заманив в «информационные пузыри», создать поляризацию мнений, с помощью манипуляций и фейковых новостей. Алгоритмы ранжирования существенно влияют на процессы динамики мнений, поскольку они контролируют потоки информации между людьми. Таким образом, социальные сети становятся локомотивом для рекламного и политического продвижения, но также служат площадкой для социальных исследований.
Относительно недавно ученые стали совмещать идеи алгоритмов персонализации с моделями формирования мнений, что позволило выявить динамику мнений пользователей и информацию о социальных связях между людьми в больших масштабах с помощью методов машинного обучения. Современные методологии позволяют не только определить структуры связей, но и их веса, позволяют сделать прогнозы. Однако интеграция самой информации довольно затруднена, поскольку нет общепринятых стандартов моделей и для каждой задачи может потребоваться определенный формат данных, что весьма ограничивает область их применения.
Для решения этой проблемы Иван Козицин, старший научный сотрудник Института проблем управления имени В. А. Трапезникова РАН и доцент кафедры высшей математики МФТИ и, разработал достаточно общую и минимальную агентную модель формирования мнения. С одной стороны, гибкую, способную упростить и обобщить широкий спектр предположений и моделей влияния, а с другой легко калибруемую на эмпирических данных, к которым она предъявляет относительно небольшое количество требований.
«В идеале нам необходимо отследить насколько сильно меняется мнение конкретного пользователя в зависимости от его окружения в социальной сети, построить прогноз развития событий. При этом сама модель должна быть максимально универсальной и подходить для анализа данных под разные запросы, чего до сих пор нет. Несмотря, на то, что уже накопилось огромное количество информации и моделей, сами модели используют различные математические аппараты и подходы к формализации», — рассказал о проекте Иван Козицин.
Изучив, применяемые варианты, ученый предложил использовать табличный подход: все возможные изменения мнений описываются вероятностями, которые группируются в специальную таблицу. Заранее подбирается азбука мнений, описывающая возможные значения мнений, наиболее подходящие для изучаемого эмпирического контекста. Агенты меняют взгляды, тем самым перемещаясь между различными ячейками азбуки мнений.
«Таким образом, мы описываем вероятность изменения мнения как функцию характеристик взаимодействующих агентов. В самом простом случае у нас есть три аргумента. Первое — текущее мнение агента, на которое оказывается влияние, второй — мнение того, кто оказывает влияние и третий аргумент — в какую из возможных ячеек азбуки попадет агент в следующей момент времени», — добавляет Иван Козицин.
Рассмотрим ситуацию, когда азбука мнений состоит из четырех элементов (A, B, C, D), а текущее мнение агента – B, и мнение источника, которое оказывает на него влияния — D. Потенциально возможны четыре исхода: B → A, B → B, B → C, B → D. Для каждого из них прописывается своя вероятность, в сумме они дают единицу. Интуитивно кажется, что возможны только два исхода: B → B (первый агент остался при своем мнении) и B → D (второй агент убедил первого в своей правоте).
На практике все намного сложнее и заранее нельзя исключать ни одну из альтернатив. Таким образом, создается своеобразная карта хождений по ячейкам азбуки мнений, которая формализуется в рамках вероятностей переходов между элементами. Эти вероятности записываются в трехмерную таблицу (таблиц переходов), именно поэтому данный подход называется табличным.
Такой метод описания процессов социального влияния чрезвычайно адаптивен, поскольку соответствующей настройкой элементов таблицы переходов позволяет смоделировать практически любой из известных в литературе механизмов социального влияния.
А имея под рукой таблицу переходов и текущее состояние общественного мнения, можно смоделировать его дальнейшее развитие, используя аппарат теоретической физики и теории дифференциальных уравнений.
«Эмпирические исследования в данной области зачастую конфликтуют друг с другом, что может свидетельствовать о том, что не существует какой-то одной модели, исчерпывающе описывающей динамику мнений людей – каждая модель должна подбираться ситуативно, в зависимости от контекста. Предлагаемый мной табличный подход является возможным решением данной проблемы. Его можно расширить, учтя и другие аспекты социального влияния. К примеру, индивиды, обладающие схожими характеристиками (цвет кожи, религия, возраст) более склонны доверять друг другу. В результате модель становится более точной», — заключает Иван Козицин.
К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.
Люди, которые были на грани смерти, затем иногда рассказывают, как мчались навстречу необычайно яркому свету или видели всю свою жизнь, проносящуюся перед глазами. Эти переживания на первый взгляд напоминают галлюцинации под воздействием некоторых психоделиков. Но есть и существенные различия, обнаружили исследователи из Великобритании.
Биотехнологи из Ноттингемского университета (Великобритания) воспроизвели процесс естественной ферментации какао-бобов в лаборатории, чтобы проверить, можно ли улучшить вкус готового продукта «вручную». Оказалось, что правильно подобранная колония микроорганизмов может внести свои нотки и определить качество будущего шоколада.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии