Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Математическая модель предскажет поведение клеток при ранах и онкологии
Чтобы сохранить свою целостность при порезах, ссадинах и воспалительных процессах, клетки эпителиальной ткани умеют менять форму и перестраиваться относительно друг друга — это играет важную роль в заживлении ран. Но тот же механизм задействован в развитии рака, когда клетки начинают бесконтрольно делиться. Согласно статистике ВОЗ, в 2022 году во всем мире было зарегистрировано 20 миллионов новых случаев рака, а к 2050 году эта цифра вырастет на 77% и достигнет 35 миллионов. Ученые Пермского Политеха разработали математическую модель, которая позволяет подробно рассмотреть, как именно клетки эпителия перестраиваются под воздействием механических нагрузок.
Статья опубликована в «Российском журнале биомеханики». Исследование выполнено при финансовой поддержке Российского научного фонда.
Эпителиальные ткани постоянно подвергаются механическим воздействиям – растяжению или сжатию при ссадинах, порезах и воспалительных процессах. Для того, чтобы сохранить целостность и функциональность, тканевые элементы способны перестраиваться – этот процесс, который называется переупаковкой, помогает покровам восстанавливаться после повреждений, адаптироваться к изменениям. Работает это так: клетки меняют форму и расположение, чтобы равномерно распределить нагрузку, но остаются прочно связанны друг с другом благодаря специальным контактам – десмосомам. При повреждении кожного покрова (например, порезе) клетки на краю раны растягиваются, делятся и замещают погибшие, быстро восстанавливая защитный барьер. Так переупаковка играет ключевую роль в заживлении кожи.
Этот процесс также задействован в развитии рака. В здоровых тканях перестройка происходит аккуратно, но при онкологических заболеваниях этот механизм «ломается»: биологические элементы теряют связь с соседями и начинают бесконтрольно делиться, а вместо упорядоченной структуры образуется хаотичная масса – опухоль. Впоследствии она начинает пускать метастазы – это процесс, когда раковые клетки отделяются от своих «соседей», становятся подвижными и проникают в другие органы.
Международные исследования переупаковки сосредоточены на том, как клетки меняют свою форму и расположение во время роста органов и как взаимодействуют между собой, однако до сих пор многие аспекты остаются неясными из-за сложности биологических процессов. В живых организмах сложно следить за каждым этапом этого механизма в реальном времени, поскольку они могут быть скрыты глубоко внутри тканей. В условиях эксперимента же воспроизвести этот процесс трудно из-за необходимости контролировать очень много факторов. Клетки могут переупаковываться по-разному в зависимости от нагрузки, формы ткани и химических сигналов, поэтому предугадать результат процесса достаточно сложно.
Ученые Пермского Политеха разработали математическую модель, которая воспроизводит переупаковку и позволяет предсказывать, как клетки будут реагировать на различные внешние факторы.
Существующие модели не учитывают изменение формы и углов клеток, химические сигналы между ними, а также плохо адаптируются к разным типам тканей – иными словами, они слишком упрощены. Разработка политехников, напротив, принимает во внимание эти параметры, что делает ее точной и позволяет применять в исследованиях разных типов эпителиальных покровов.
— Мы использовали усовершенствованную вершинную модель, которая описывает клетки как многоугольники, соединенные между собой вершинами (точками) и способные изменять свою форму и размеры в зависимости от взаимодействия с соседями. Это совокупность уравнений, которые позволяют рассчитать эластичность биологических элементов, механические силы, которые на них действуют – например, растяжение ткани, – и химические сигналы, которыми они обмениваются, — рассказывает Максим Бузмаков, младший научный сотрудник кафедры «Прикладная физика» ПНИПУ.
Моделирование позволило получить наглядные данные о том, как в процессе переупаковки меняется форма клеток, их расположение и уровень энергии. Кроме того, авторы пронаблюдали, как они перемещаются внутри эпителия.
— Особое внимание стоит уделить интеркаляции — так называется способность тканевых элементов менять свое положение относительно соседей. Мы исследовали большой ряд значений этого параметра. Было установлено его самое оптимальное значение (dint = 0,40), при котором достигается наиболее устойчивое состояние эпителия, то есть ткань ведет себя наиболее естественно и устойчиво, как в здоровом организме, – поясняет Иван Красняков, доцент, научный сотрудник кафедры «Прикладная физика» ПНИПУ, кандидат физико-математических наук.
Модель ученых Пермского Политеха показывает, как клетки кожи или слизистых оболочек перемещаются и перестраиваются при повреждении. Она уже прошла апробацию на данных клинических исследований, доступных в литературе. Благодаря ей можно предсказывать, как будет вести себя ткань при различных воздействиях — например, во время хирургического вмешательства или ношения протезов. Это может помочь в разработке новых методов ускорения заживления и восстановления тканей. Разработанная модель универсальна, что позволяет применять ее для широкого круга биологических исследований – в частности, для изучения того, как раковые клетки теряют связь с соседями и начинают мигрировать по организму. Это важно для исследования механизмов развития онкологических заболеваний, в чем ученые и видят дальнейшие перспективы своего исследования.
Свайные фундаменты — оптимальное решение для многих типов грунтов (слабых, болотистых), где классические типы оснований не справляются. Их широко используют в регионах с сезонным промерзанием почвы из-за опасного явления — морозного пучения. Такой эффект приводит к постепенному выдавливанию опор и может вызвать деформацию и разрушение конструкций. Существующие способы их защиты не всегда эффективны: утепление не спасает в морозы, дренаж не снимает давление льда, а замена грунта слишком дорога. Ученые Пермского Политеха разработали коническую сваю, которая снижает объем материала, необходимого для изготовления на 40%, и превосходит по надежности традиционные цилиндрические аналоги на 30%.
На снимке месяца от Европейского космического агентства — восемь ярких иллюстраций гравитационного линзирования. Этот искажающий эффект, вызванный массивными объектами, предсказал более века назад Альберт Эйнштейн. В новой работе ученые спрогнозировали, какие кольца Эйнштейна еще предстоит найти орбитальному телескопу.
Повторный анализ данных 20-летней давности позволил найти на крупном спутнике Юпитера следы «природного антифриза». Они указали на возможную криовулканическую активность на этом небесном теле, а также увеличенную стойкость его подледного океана к замерзанию.
По общепринятой и незыблемой до сих пор версии, Уран и Нептун — ледяные гиганты: основную часть их массы составляют летучие вещества в особом состоянии «горячих льдов». Теперь у планетологов появилась альтернативная гипотеза: они подозревают, что никаких «горячих льдов» внутри них может не быть, а вместо этого есть крупные каменные ядра, окруженные легкой газовой оболочкой.
Инженеры Unitsky String Technologies Inc. разработали тяговые накопители энергии, которых хватает рельсовому беспилотнику для перевозки морских контейнеров.
Многие принимают добавки с витамином D для поддержания здоровья костей и укрепления иммунитета. Однако исследование недавно показало, что употребление одной из форм — эргокальциферола (D2) — может быть неэффективным для устранения дефицита этого витамина.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии