• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12.04.2021, 13:11
РНФ
1,7 тыс

Покрытая сахаром полимерная гранула в 500 раз эффективнее доставила ДНК в клетку

❋ 4.7

Российские и американские ученые разработали инновационную невирусную систему доставки ДНК в клеточные культуры иммунных клеток. Ранее уже были попытки использовать гранулы ДНК с положительно заряженным полимером, однако у такого метода была низкая эффективность. В своей работе ученые дополнительно покрыли гранулы сахаром маннозой и увеличили эффективность доставки в 500 раз. Разработка поможет лечить раковые опухоли.

Покрытая сахаром полимерная гранула в 500 раз эффективнее доставила ДНК в клетку / ©Getty images / Автор: Сергей Данилов

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Macromolecular Bioscience. Генная инженерия все больше входит в повседневную жизнь каждого человека: модификации генов используют для повышения урожайности и устойчивости растений к патогенам, а также для получения новых штаммов бактерий и грибов, которые могут синтезировать практически любые вещества, начиная от топлива и заканчивая антибиотиками. Кроме того, такой подход может помочь лечить болезни человека и животных, например, возвращать способность видеть при потере зрения.

Для медицинских целей необходимо сделать доставку ДНК в целевую клетку как можно более безопасной. Существует множество методов, однако наиболее оптимальным считается использование вирусных частиц: они прилипают только к белкам на поверхности определенных клеток и, кроме того, не вызывают их гибель. Хотя вирусные доставщики не содержат собственного генетического материала и не могут размножаться в клетках, процесс их синтеза и сборки сложен и требует контроля на всех этапах производства, чтобы не допустить появления настоящих вирусов.

Невирусные доставщики ДНК тоже можно улучшить таким образом, чтобы генетический материал поступал только в конкретные клетки организма, например в макрофаги. Макрофаги одни из иммунных клеток в норме должны защищать организм от инфекций и рака. Однако если уже есть опухоль, она может «завербовать» часть макрофагов для своей защиты от остального иммунитета.

Методы генной инженерии могут помочь уничтожить таких клеточных «предателей» или рекрутировать их назад, тем самым ослабив опухоль. В своей работе исследователи из Московского государственного университета имени М. В. Ломоносова, Небрасского университета (Омаха) и Университета Северной Каролины (Чапел-Хилл) эффективно доставили ДНК в клетки с помощью положительно заряженных полимеров.

Положительный заряд в этом случае нужен для связывания отрицательно заряженной ДНК. Из таких полимеров самопроизвольно собираются частицы, которые дальше можно модифицировать: добавить дополнительные связи внутри клубка и тем самым сделать его более прочным или покрыть частицу оболочкой. Ученые определили способность доставлять генетический материал у частиц из двух разных полимеров, содержащих в составе аминокислотные мономеры из лизина или аспарагиновой кислоты. Они оценивали, как дополнительные сшивки и оболочка из сахара маннозы влияют на выживаемость макрофагов и способность частиц помещать генетический материал в эти клетки.

В клетку доставляли ДНК флуоресцентных белков, которая способна заставить клетку светиться. Это помогло определить, удалось ли перенести в клетку нуклеиновые кислоты с помощью полимерных частиц: чем сильнее свечение культуры клеток, тем успешнее доставка. Оказалось, что среди всех исследуемых вариантов наиболее эффективны полимерные частицы с аспарагиновой кислотой, покрытые маннозой и без внутренних сшивок. В этом случае выживает 80 процентов клеток, что выше, чем у некоторых популярных методов. Например, при бомбардировке клеток золотыми частицами с ДНК выживает лишь половина. Более того, эффективность переноса нуклеиновых кислот у таких частиц в 500 раз больше показателя для клубков полимера без маннозной оболочки.

«Несмотря на успех наших опытов, эффективность доставки была немного меньше, чем для некоторых известных аналогов, предложенных для доставки ранее. Однако они не направлены специфически в иммунные клетки и не могут быть применены на людях из-за своей высокой токсичности. В отличие от таких подходов, наш метод подходит для человека», комментирует руководитель проекта по гранту РНФ Александр Кабанов, член-корреспондент РАН, доктор химических наук, руководитель лаборатории химического дизайна бионаноматериалов химического факультета Московского государственного университета имени М. В. Ломоносова. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
РНФ осуществляет финансовую и организационную поддержку фундаментальных и поисковых научных исследований посредством финансирования прошедших конкурсный отбор научных, научно-технических программ и проектов.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

17 ноября, 09:26
Адель Романова

Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.

17 ноября, 08:45
Любовь С.

Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.

15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

15 ноября, 10:10
Любовь С.

Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.

11 ноября, 09:26
Максим Абдулаев

Ученые выяснили, как хамелеонам удается вращать глазами в разные стороны. Как оказалось, зрительные нервы хамелеона не короткие и прямые, как у большинства животных, а длинные и закрученные в спираль, подобно старинному шнуру телефонной трубки. Эта ранее неизвестная особенность создает запас длины, который позволяет вращаться, не натягивая и не повреждая жизненно важный нерв.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно