Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение используют для решения проблем квантовой оптики
Ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии — для восстановления исходного состояния по измеренным данным.
Методы машинного обучения, ставшие в последнее время универсальным инструментом интеллектуального анализа данных, продолжают активную экспансию во все новые области. Изначально основанные на распознавании изображений, эти методы позволяют эффективно уменьшать размерность многомерных массивов данных, что делает методику крайне привлекательной в контексте решения задач классической и квантовой физики многих тел. В своей недавней работе ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии, иными словами для решения обратной задачи, то есть задачи о восстановлении исходного состояния по измеренным данным.
Несовершенство измерительной аппаратуры, а также случайные ошибки, неизменно сопутствующие любому акту измерения, делают квантовую томографию чрезвычайно сложной процедурой даже тогда, когда нам полностью известны модель, описывающая работу измерительного устройства, и то, как было приготовлено входное состояние. В тесном сотрудничестве с коллегами из Центра квантовых технологий МГУ исследователи из Сколтеха продемонстрировали, что использование нейросетевых алгоритмов существенно улучшает точность реконструкции квантового состояния. Результаты исследований опубликованы в одном из наиболее авторитетных научных изданий — журнале npj Quantum Information, входящем в семейство Nature.
Аспирант Сколтеха Адриано Макароне Палмьери, ведущий автор исследования, описывает развитый в работе подход, как новую методологию, позволяющую получить более глубокое понимание. Прежде чем влиться в коллектив Сколтеха, Адриано изучал физику и получил степень магистра в Болонском университете, широко известном не только в Италии, но и далеко за ее пределами. К совместной работе над проектом Адриано привлек своего коллегу из Милана Федерико Бианки, работающего сейчас в Университете Боккони.
Федерико, получивший первоклассное образование и степень доктора в области машинного обучения и систем искусственного интеллекта в Миланском университете Бикокка, характеризует полученные результаты как убедительный пример научного открытия в области квантовой физики, полученного на основе интеллектуального анализа экспериментальных данных. Несмотря на то, что до того, как присоединиться к проекту, Федерико не сталкивался с задачами квантовой физики, его опыт программиста-исследователя позволил иначе взглянуть на имеющиеся экспериментальные данные. Адриано и Федерико тесно взаимодействовали с другими сотрудниками научной группы Deep Quantum Labs Сколтеха Джейкоба Биамонте, включая Дмитрия Юдина.
Он описывает результаты проекта как первый важный шаг к практическому использованию нейросетевых алгоритмов в экспериментальных задачах квантовой томографии с учетом погрешностей, неизбежно сопровождающих любой измерительный процесс, и зашумленности полученных данных. Дмитрий добавляет, что квантовая томография используется повсеместно для калибровки и тестирования работы квантовых устройств.
Исследовательская работа в этом направлении была бы невозможна без поддержки со стороны коллег-экспериментаторов из Центра квантовых технологий МГУ, а именно аспиранта Егора Ковлакова и его научных руководителей Станислава Страупе и Сергея Кулика. На протяжении последних лет они активно исследуют различные методы квантовой томографии. Станислав отмечает, что к их удивлению глубокое обучение превзошло доступные на сегодняшний день методы в реальном эксперименте. Научная группа из МГУ занималась подготовкой и измерением квантовых состояний высокой размерности на экспериментальной платформе, основанной на пространственных состояниях фотонов.
Экспериментальные ошибки в подготовке состояний на входе и измерениях неизбежно сказываются на результатах, и ситуация становится хуже с увеличением размерности. В то же время дальнейшее увеличение размерности доступных квантовых состояний чрезвычайно важно для квантовых протоколов связи и особенно для квантовых вычислений — вот, где полезны методы машинного обучения.
Исследователи Сколтеха обучили глубокую нейронную сеть проводить анализ зашумленных экспериментальных данных и эффективно обучили шумоподавлению, значительно улучшая качество восстановления квантового состояния.
Обнадеживающие результаты, полученные научными коллективами Сколтеха и МГУ, позволяет им с высокой уверенностью заявить, что методы машинного обучения будут играть важную роль в будущем развитии квантовых технологий.
В узле «космической паутины» MQN01, который астрономы видят таким, каким он был примерно 11 миллиардов лет назад, обнаружили массивную галактику, окруженную облаком холодного газа, но практически не формирующую звезды. Открытие ставит под вопрос устоявшиеся представления о формировании и эволюции галактик в ранней Вселенной.
Физики экспериментально доказали, что частицы вещества при рождении сохраняют квантовую запутанность виртуальных предшественников. Пары лямбда-гиперонов и антилямбд появлялись на свет с синхронизированными спинами, которые они унаследовали от энергетических флуктуаций пустоты. Закономерность объяснила, как материя переходит из скрытого квантового состояния в физический мир, раскрыв еще один ключ к природе возникновения массы.
Легенды об использовании слонов армией Ганнибала давно известны, но ранее не находили материальных подтверждений. Теперь на юге Испании археологи обнаружили первое прямое свидетельство участия этих животных во Второй Пунической войне.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Ученые РГУ нефти и газа (НИУ) имени И. М. Губкина и Института проблем управления имени В.А. Трапезникова РАН (ИПУ РАН) создали технологию экспресс-анализа качества природного газа. Впервые для этих целей была разработана нейросеть, что позволило определить показатели качества пробы в режиме реального времени за несколько секунд вместо 20-40 минут традиционным способом — с помощью газовой хроматографии.
Группа ученых представила расчеты, по которым события в центре Млечного Пути можно объяснить без черной дыры. Правда, с физической точки зрения новое объяснение существенно более экзотично — настолько, что возникает вопрос о его соответствии бритве Оккама.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
