Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые проследили за космической погодой в реальном времени
Специалисты ИПФ РАН разработали резонансный датчик для измерения концентрации ионосферной плазмы и ее пространственно-временных флуктуаций. Датчик способен отслеживать изменения плотности ионосферы с миллисекундным разрешением, его можно установить на малые и сверхмалые искусственные спутники Земли — кубсаты.
Знания о состоянии ионосферы помогают прогнозировать и преодолевать перебои в работе систем радиосвязи, повышать точность определения местоположения с помощью спутниковых навигационных систем. Такие данные особенно важны при решении задач, связанных с освоением Арктики и Антарктики – там ионосферные возмущения, обусловленные солнечной активностью, обычно наиболее значительны. Поиск взаимосвязей плазменно-волновых процессов и электромагнитных параметров ионосферы позволит разработать методы прогноза и мониторинга стихийных бедствий природного характера, таких как землетрясения, грозы, извержения вулканов и песчаные бури, потоки космической пыли.
Часть из этих важных задач может быть решена с помощью резонансного зонда ионосферной плазмы. Зонд установлен на наноспутнике «СамСат — Ионосфера», который изготовили коллеги из Самарского университета имени С.П. Королева. Самарский спутник успешно выведен на орбиту во время пуска ракеты-носителя «Союз-2.1б» с космодрома Восточный 5 ноября 2024 года. Его размер 10x10x30 сантиметров, скорость восемь километров в секунду, высота орбиты 500 километров. Вместе с ним в космос отправилась внушительная флотилия из более чем полусотни космических аппаратов.

«Резонансный зонд лишен недостатков традиционных зондов Ленгмюра. Слишком много факторов в этом случае могут вносить помехи в измерения, да и их чувствительность ниже, чем у нашего прибора, — рассказывает Александр Галка, кандидат физико-математических наук, заведующий лабораторией методов плазменной диагностики отдела геофизической электродинамики ИПФ РАН. – Другие методы часто непригодны или неприменимы на маленьких кубсатах. Наш метод основан на измерении диэлектрической проницаемости плазмы, величина которой определяется концентрацией электронов. Зонд работает на частоте, превышающей все характерные частоты в ионосфере, что упрощает аналитическое описание измерительной системы. На спутнике «СамСат-Ионосфера» концентрация плазмы регистрируется вдоль орбиты с временным интервалом 2 миллисекунды, однако зонд может работать на порядок быстрее и получать данные с микросекундным временным разрешением».
Экспериментальная отработка методики проведена на уникальных плазменных стендах «Крот» и «Ионосфера» в ИПФ РАН, предназначенных для моделирования электрофизических процессов в ионизированных оболочках Земли, а также для плазменных испытаний образцов космической техники. Разработка метода измерения концентрации ионосферной плазмы и ее апробация на экспериментальном стенде была поддержана грантом РНФ. Большие размеры установок и высокая повторяемость условий разряда позволили провести эксперимент в условиях «безграничной» плазмы в реальном масштабе 1:1 в диапазоне изменения концентрации плазмы от 10^3 до 10^6 частиц в кубическом сантиметре. Эти значения соответствуют высоте 500 километров, в районе которой сосредоточена основная масса различных спутников, там же проходит орбита Международной космической станции. В то же время орбита самарского спутника захватывает приполярные широты, вплоть до 80 градусов – сложную и малоизученную область.
Нижегородские физики расшифровывают и обрабатывают первые полученные данные. Они хорошо согласуются с показателями традиционных методов исследования ионосферы. Далее исследователям предстоят тщательные перекрестные проверки, успешное прохождение которых позволит включить новый метод в космические программы.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Международная научная группа при участии МФТИ разработала композитный гель-полимерный электролит для аккумуляторов. Этот материал позволит создать безопасные высокомощные батареи, что важно для электромобилей, гаджетов и систем хранения энергии.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
