• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12 августа, 14:41
ФизТех
9

Физики превратили алмазы в источники света

❋ 4.5

Ученые из ТИСНУМ и МФТИ исследовали спектры электролюминесценции алмазного p-i-n-диода до и после облучения потоком электронов и последующего отжига. Результаты работы могут быть использованы в высокотемпературной оптоэлектронике.

Рисунок 1. Алмазный p-i-n-диод. А) Схема: 1 — p-слой, легированный бором, 2 — i-слой, содержащий азото-замещенные вакансии, 3 — n-слой, легированный азотом, 4 — платино-титановые контакты. Б) Вольт-амперная характеристика до (сплошные линии) и после (пунктирные линии) облучения электронами и вакуумного отжига при 300°C, 500°C и 600°C (черный, синий и красный цвет, соответственно) / © Буга С. Г. и др., «Журнал технической физики»

Исследование опубликовано в «Журнале технической физики». Полупроводники занимают промежуточное положение между проводниками и диэлектриками. Они могут проводить электрический ток только при определенных условиях, что позволяет применять данные материалы для выявления изменений какого-либо параметра среды и преобразования полученной информации в электрический сигнал. На этом принципе работают полупроводниковые сенсоры.

Выделяют полупроводники n- и p-типа. В первых из них носителями электрического заряда являются электроны, а во вторых — так называемые дырки, которые образуются в результате выхода электронов из валентной зоны. Приведение в контакт материалов, имеющих разный характер проводимости, будет сопровождаться диффузией: электроны проникнут в p-полупроводник, а в n-полупроводнике появятся дырки. Сформируется p-n-переход — слой, препятствующий движению электротока. Описанным образом устроен диод — устройство, проводящее ток преимущественно в одном направлении.

Особое место среди электронных компонентов занимают p-i-n-диоды. Для их производства, помимо двух вышеназванных материалов, используют полупроводники i-типа, в которых число дырок и свободных электронов равно и зависит от собственных свойств вещества. Ученые из ТИСНУМ и МФТИ изготовили экспериментальный образец алмазного светоизлучающего p-i-n-диода (Рисунок 1А) и исследовали его при высоких температурах: до 680°C. Процесс включал в себя несколько этапов.

Сначала ученые синтезировали алмаз методом температурного градиента. Метод предполагает растворение графита — источника углерода — в металле и создание условий, термодинамически выгодных для образования алмаза. Из потока раствора углерод осаждали на затравку — маленький кристалл. Движение раствора и диффузия происходили благодаря более низкой температуре в области затравки.


Рисунок 2. Электролюминесценция алмазного p-i-n-диода до облучения электронами и отжига. А) Вид сверху. T = 680 °C, U = 10 В, I = 20 мА. Б) Вид сбоку: n-слой (слева, желтый), p-слой (справа, сине-фиолетовый). Цена деления шкалы — 1,5 мкм. T = 450°C, U = 10 В, I = 10 мкА / © Буга С. Г. и др., «Журнал технической физики»

Полученный алмаз относится к типу Ib. Это означает, что в его кристаллической решетке малая часть атомов углерода замещена азотом, но таким образом, что они не встречаются в соседних позициях.

Затем ученые последовательно вырастили на алмазной подложке i- и p-слой, а именно: высокочистый алмаз и алмаз с добавлением бора, то есть легированный. Толщина слоев составляет 6 и 4 мкм соответственно. Химическое осаждение проводили из газовой фазы водород — метан, а для легирования в смесь добавляли диборан. После этого трехслойный образец был подвергнут отжигу с целью удаления загрязнений.

Платино-титановые контакты в виде тонких пленок ученые нанесли на образец в магнетронной распылительной системе. Она состоит из электродов, магнитного блока и аргоновой пушки. При разряжении и подаче напряжения между анодом и катодом, так называемой мишенью, зажигается тлеющий разряд. В этих условиях аргон ионизируется и бомбардирует мишень, что приводит к отрыву от нее атомов металла и их последующему осаждению на поверхности алмазного образца.

Чтобы повысить количество азото-замещенных вакансий в i-слое, ученые облучали диод потоком электронов с энергией 3 МэВ, а потом отжигали в вакууме при 800°C в течение 2 часов. Благодаря этому сила тока, проходящего через диод в прямом направлении и заданном температурном режиме, снизилась в 5−10 раз. В случае обратного включения, наоборот, данная величина немного возросла (Рисунок 1Б). Следовательно, примерно на порядок уменьшился коэффициент выпрямления диода, равный отношению силы прямого тока к обратному при одинаковом напряжении.

«При прохождении тока в прямом направлении сопротивление диода возрастает из-за дефектов алмазной структуры и уменьшения концентрации атомов азота в позициях замещения, — пояснил Сергей Буга, профессор кафедры физики и химии наноструктур МФТИ. — В обратном направлении, наоборот, наличие дефектов способствует повышению тока утечки».

Прямое включение и нагрев диода выше 400°C сопровождался электролюминесценцией, иными словами, свечением вследствие возбуждения электрическим полем (Рисунок 2). Цвет излучения был зеленоватый, что характерно для спектра, имеющего максимум в области длин волн 600-610 нм.

Рисунок 3. Спектры излучения диода до (А–В) и после (Г) облучения электронами и вакуумного отжига / © Буга С. Г. и др., «Журнал технической физики»

Ученые сняли спектры электролюминесценции диода в температурном диапазоне 450–680°C до и после облучения электронами (Рисунок 3). Установлено, что с ростом температуры, а также напряжения и силы тока, проходящего через диод, полоса электролюминесценции становится шире, а ее максимум смещается в область более длинных волн: с 610 до 680 нм. Наиболее ярко диод светится при 575°C после облучения и отжига.

«Основным источником электролюминесценции являются нейтральные оптически-активные азот-вакансионные центры окраски, — добавил Сергей Буга. — Дальнейшее изучение возможностей суперлюминесценции или повышения яркости излучения диода требует увеличения плотности тока и концентрации этих центров в i-слое».

Разработка ученых будет интересна предприятиям, производящим высокотемпературную оптоэлектронику и фемтосекундные лазеры. Исследование выполнено при финансовой поддержке РНФ.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
9 августа, 15:19
Любовь С.

Чтобы проверить законы физики в условиях, недоступных на Земле, астрофизик Козимо Бамби (Cosimo Bambi) из Фуданьского университета (Китай) предложил отправить к центру ближайшей черной дыры «нанокрафт» — крошечный зонд, способный добраться до цели примерно за 60-75 лет благодаря наземной лазерной установке.

12 августа, 11:29
Юлия Трепалина

Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.

12 августа, 08:17
Адель Романова

Венера в числе прочего привлекает внимание необычно медленным и притом ретроградным вращением вокруг своей оси. Вызывает вопросы и отсутствие у такой крупной каменистой планеты естественного спутника, как у Земли и Марса. По мнению ученых, все это наводит на подозрения о том, что когда-то вторая планета Солнечной системы пережила гигантское столкновение.

9 августа, 15:19
Любовь С.

Чтобы проверить законы физики в условиях, недоступных на Земле, астрофизик Козимо Бамби (Cosimo Bambi) из Фуданьского университета (Китай) предложил отправить к центру ближайшей черной дыры «нанокрафт» — крошечный зонд, способный добраться до цели примерно за 60-75 лет благодаря наземной лазерной установке.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

9 августа, 10:54
Юлия Трепалина

Американские медики описали случай из своей практики, наглядно показывающий, чем могут закончиться консультации с ChatGPT по поводу здоровья.

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно