• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12 августа, 14:41
ФизТех
649

Физики превратили алмазы в источники света

❋ 4.5

Ученые из ТИСНУМ и МФТИ исследовали спектры электролюминесценции алмазного p-i-n-диода до и после облучения потоком электронов и последующего отжига. Результаты работы могут быть использованы в высокотемпературной оптоэлектронике.

Рисунок 1. Алмазный p-i-n-диод. А) Схема: 1 — p-слой, легированный бором, 2 — i-слой, содержащий азото-замещенные вакансии, 3 — n-слой, легированный азотом, 4 — платино-титановые контакты. Б) Вольт-амперная характеристика до (сплошные линии) и после (пунктирные линии) облучения электронами и вакуумного отжига при 300°C, 500°C и 600°C (черный, синий и красный цвет, соответственно) / © Буга С. Г. и др., «Журнал технической физики»

Исследование опубликовано в «Журнале технической физики». Полупроводники занимают промежуточное положение между проводниками и диэлектриками. Они могут проводить электрический ток только при определенных условиях, что позволяет применять данные материалы для выявления изменений какого-либо параметра среды и преобразования полученной информации в электрический сигнал. На этом принципе работают полупроводниковые сенсоры.

Выделяют полупроводники n- и p-типа. В первых из них носителями электрического заряда являются электроны, а во вторых — так называемые дырки, которые образуются в результате выхода электронов из валентной зоны. Приведение в контакт материалов, имеющих разный характер проводимости, будет сопровождаться диффузией: электроны проникнут в p-полупроводник, а в n-полупроводнике появятся дырки. Сформируется p-n-переход — слой, препятствующий движению электротока. Описанным образом устроен диод — устройство, проводящее ток преимущественно в одном направлении.

Особое место среди электронных компонентов занимают p-i-n-диоды. Для их производства, помимо двух вышеназванных материалов, используют полупроводники i-типа, в которых число дырок и свободных электронов равно и зависит от собственных свойств вещества. Ученые из ТИСНУМ и МФТИ изготовили экспериментальный образец алмазного светоизлучающего p-i-n-диода (Рисунок 1А) и исследовали его при высоких температурах: до 680°C. Процесс включал в себя несколько этапов.

Сначала ученые синтезировали алмаз методом температурного градиента. Метод предполагает растворение графита — источника углерода — в металле и создание условий, термодинамически выгодных для образования алмаза. Из потока раствора углерод осаждали на затравку — маленький кристалл. Движение раствора и диффузия происходили благодаря более низкой температуре в области затравки.


Рисунок 2. Электролюминесценция алмазного p-i-n-диода до облучения электронами и отжига. А) Вид сверху. T = 680 °C, U = 10 В, I = 20 мА. Б) Вид сбоку: n-слой (слева, желтый), p-слой (справа, сине-фиолетовый). Цена деления шкалы — 1,5 мкм. T = 450°C, U = 10 В, I = 10 мкА / © Буга С. Г. и др., «Журнал технической физики»

Полученный алмаз относится к типу Ib. Это означает, что в его кристаллической решетке малая часть атомов углерода замещена азотом, но таким образом, что они не встречаются в соседних позициях.

Затем ученые последовательно вырастили на алмазной подложке i- и p-слой, а именно: высокочистый алмаз и алмаз с добавлением бора, то есть легированный. Толщина слоев составляет 6 и 4 мкм соответственно. Химическое осаждение проводили из газовой фазы водород — метан, а для легирования в смесь добавляли диборан. После этого трехслойный образец был подвергнут отжигу с целью удаления загрязнений.

Платино-титановые контакты в виде тонких пленок ученые нанесли на образец в магнетронной распылительной системе. Она состоит из электродов, магнитного блока и аргоновой пушки. При разряжении и подаче напряжения между анодом и катодом, так называемой мишенью, зажигается тлеющий разряд. В этих условиях аргон ионизируется и бомбардирует мишень, что приводит к отрыву от нее атомов металла и их последующему осаждению на поверхности алмазного образца.

Чтобы повысить количество азото-замещенных вакансий в i-слое, ученые облучали диод потоком электронов с энергией 3 МэВ, а потом отжигали в вакууме при 800°C в течение 2 часов. Благодаря этому сила тока, проходящего через диод в прямом направлении и заданном температурном режиме, снизилась в 5−10 раз. В случае обратного включения, наоборот, данная величина немного возросла (Рисунок 1Б). Следовательно, примерно на порядок уменьшился коэффициент выпрямления диода, равный отношению силы прямого тока к обратному при одинаковом напряжении.

«При прохождении тока в прямом направлении сопротивление диода возрастает из-за дефектов алмазной структуры и уменьшения концентрации атомов азота в позициях замещения, — пояснил Сергей Буга, профессор кафедры физики и химии наноструктур МФТИ. — В обратном направлении, наоборот, наличие дефектов способствует повышению тока утечки».

Прямое включение и нагрев диода выше 400°C сопровождался электролюминесценцией, иными словами, свечением вследствие возбуждения электрическим полем (Рисунок 2). Цвет излучения был зеленоватый, что характерно для спектра, имеющего максимум в области длин волн 600-610 нм.

Рисунок 3. Спектры излучения диода до (А–В) и после (Г) облучения электронами и вакуумного отжига / © Буга С. Г. и др., «Журнал технической физики»

Ученые сняли спектры электролюминесценции диода в температурном диапазоне 450–680°C до и после облучения электронами (Рисунок 3). Установлено, что с ростом температуры, а также напряжения и силы тока, проходящего через диод, полоса электролюминесценции становится шире, а ее максимум смещается в область более длинных волн: с 610 до 680 нм. Наиболее ярко диод светится при 575°C после облучения и отжига.

«Основным источником электролюминесценции являются нейтральные оптически-активные азот-вакансионные центры окраски, — добавил Сергей Буга. — Дальнейшее изучение возможностей суперлюминесценции или повышения яркости излучения диода требует увеличения плотности тока и концентрации этих центров в i-слое».

Разработка ученых будет интересна предприятиям, производящим высокотемпературную оптоэлектронику и фемтосекундные лазеры. Исследование выполнено при финансовой поддержке РНФ.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

22 сентября, 09:42
Игорь Байдов

Кратероподобное образование в Северном море, у берегов Великобритании, уже несколько десятилетий не дает покоя научному сообществу. Идут горячие споры о происхождении структуры. Одни ученые полагают, что это результат импактного события. Другие списывают все на земные процессы. Точку в вопросе поставила международная команда геологов.

22 сентября, 08:07
Адель Романова

Недавнее исследование показало, что заметки системы community notes под сомнительными постами на платформе X (бывший Twitter) действительно снижают распространение дезинформации и помогают предотвращать введение множества людей в заблуждение.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

21 сентября, 10:01
Evgenia Vavilova

Столкновения кислород—кислород и неон—неон рассказали ученым больше о кварк-глюонной плазме и подтвердили несимметричную форму ядра неона.

19 сентября, 10:42
Evgenia Vavilova

Ученые обнаружили, что генетическая программа формирования пальцев у сухопутных животных могла возникнуть из маловероятного источника. Ключ к разгадке лежал в некодирующих областях генома.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно