• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
31.10.2023
ЮУрГУ
370

Челябинские ученые создали алгоритм, распознающий опухоли мозга с вероятностью 99 процентов

4.7

Старший научный сотрудник лаборатории больших данных и машинного обучения Южно-Уральского государственного университета профессор Сэчин Кумар разработал модель нейросети для распознавания опухолей мозга по изображениям магнитно-резонансной томографии (МРТ).

Челябинские ученые создали алгоритм, распознающий опухоли мозга с вероятностью 99 процентов
Челябинские ученые создали алгоритм, распознающий опухоли мозга с вероятностью 99 процентов / © Getty images / Автор: Euclio Drusus

«Обучение нейросети проходило на общедоступном наборе из 3064 изображений МРТ от 230 пациентов, – рассказывает Сэчин Кумар. – Распознавались три вида опухолей – глиомы, менингиомы и опухоли гипофиза. Наша модель сочетает в себе элементы сверточной и конволюционной нейронных сетей (U-net и CNN) для сегментации и классификации опухолей, что увеличило ее эффективность с точностью более чем 99 процентов». На наборе данных пациентов с уже подтвержденным диагнозом, в 99,39 процентов была диагностирована болезнь, и лишь 0,61 процентов системой был ошибочно поставлен диагноз «здоровы».

Для такого результата нейросеть прошла 150 циклов обучения. Алгоритмы были реализованы на языке программирования Python. «При обучении нейросети каждое изображение изначально сегментировалось на девять частей, – объясняет суть технологии Сэчин Кумар. – Выстраивалось дерево опорных точек (VPT), просчитывались показатели ближайших соседей-пикселей, создавались метки, которые потом использовались для вычисления вероятностей».

Затем использовалась «сверточная» сеть. «Сверточная нейронная сеть (U-net) – особая архитектура для задач семантической сегментации, таких, как например, сегментация опухолей мозга. Она состоит из двух главных частей – кодера и декодера. Кодер собирает и редуцирует пространственную информацию в изображении с помощью сверточных слоев и операций объединения, в то время как декодер преобразует ее для создания карты сегментации.

«Конволюционные нейронные сети (CNN), рекуррентные нейронные сети (RNN), сверточные нейронные сети (U-Net), сети с долговременной и кратковременной памятью (LSTM) – это все технологии глубокого обучения, – поясняет Сэчин Кумар. – В сущности, глубокое обучение полезно тогда, когда объем данных достаточно большой, и простые алгоритмы машинного обучения не справляются с ним за приемлемое время. Глубокое обучение обеспечивает высокую точность при работе именно с большими данными».

Выбор дерева опорных точек на МРТ – основа принципа / © Пресс-служба ЮУрГУ

Профессор Кумар уверен в эффективности своей модели, однако предостерегает от поспешного ее внедрения. И дело прежде всего в географии. «Общедоступные наборы данных собраны в конкретном регионе планеты, – поясняет Сэчин Кумар. – Но образ жизни и уровень жизни населения, экология, питание, качество воды и воздуха и другие экологические и медицинские параметры в каждой стране разные». Поэтому нейросеть, перед внедрением в больничную практику, предстоит дополнительно обучить на данных МРТ конкретной страны или региона. Но это лишь пока.

Старший научный сотрудник лаборатории больших данных и машинного обучения Южно-Уральского государственного университета профессор Сэчин Кумар / © Пресс-служба ЮУрГУ

«Целью проекта была разработка более точной модели – по сравнению с уже существующими. И нам это удалось, – говорит Сэчин Кумар. – Следующий шаг – сбор, объединение данных из других стран и наконец разработка некой универсальной модели, которую одобрят и внедрят для использования в больницах по всему миру».

Сэчин Кумар – один из семи сотрудников Южно-Уральского государственного университета, получивший премию «Признание ЮУрГУ-2022», победитель в номинации «Наука». Его работа поддержана грантом Российского научного фонда. Со своим открытием он также принимал участие в проекте FENU-2020-0022 «Математические основы, модели и алгоритмы цифровой индустрии» под руководством профессора Леонида Соколинского, поддержанном Министерством образования России.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Южно-Уральский государственный университет — это центр цифровых трансформаций, где проводят инновационные исследования по большинству приоритетных направлений развития науки и техники. В соответствии со стратегией научно-технологического развития России, университет сфокусирован на продвижении крупных научных междисциплинарных проектов в области цифровой индустрии, материаловедения и экологии. В 2021 году ЮУрГУ победил в конкурсе по программе «Приоритет-2030». Вуз выполняет функции регионального проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня (УМНОЦ).
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 17:55
Наталия Лескова

Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.

20 ноября
Березин Александр

Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.

Вчера, 07:27
Полина Меньшова

Люди не заканчивают играть в детстве: во взрослом возрасте игры позволяют им не только весело провести свободное время или чему-то научиться, но и лучше узнать друг друга или заключить сделку. Подобное социальное игровое поведение считалось редкостью у взрослых особей других видов, однако международная команда ученых обнаружила регулярные игры на протяжении всей жизни у шимпанзе.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

19 ноября
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

18 ноября
Юлия Трепалина

Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно