Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Происхождение Вселенной предложили пересмотреть с помощью численной относительности
Устройство Вселенной обычно описывают с помощью уравнений общей теории относительности Эйнштейна. Но чтобы понять, как гравитация ведет себя в экстремальных условиях — например, при рождении черных дыр или в момент гипотетической инфляции — классического подхода недостаточно. Сделать это можно, как показали авторы нового исследования, обратившись к методу численной относительности.
Могла ли Вселенная переживать циклы сжатий и расширений? Почему стала такой однородной и изотропной? Что было до Большого взрыва? Подобные вопросы десятилетиями считались слишком «метафизическими» для науки, поскольку там, где плотности и температуры устремляются в бесконечность — то есть в экстремальных условиях — стандартные уравнения ОТО, описывающие гравитацию, «ломаются».
Возможный выход из положения нашла группа космологов и астрофизиков, показав, что численная относительность — метод компьютерного моделирования, позволяющий приблизительно решать уравнения ОТО, может оказаться ключом к самым неразрешимым загадкам космологии. Результаты научной работы, проведенной Джосу Ауррекоэчеа (Josu C. Aurrekoetxea) из Оксфордского университета (Великобритания), Кэти Клаф (Katy Clough) из Лондонского университета королевы Марии и Юджин Лим (Eugene A. Lim) из Королевского колледжа Лондона, опубликованы в журнале Living Reviews in Relativity.
Если раньше численную относительность использовали в основном для расчетов гравитационных волн от слияний черных дыр и нейтронных звезд, то теперь ее можно применить для изучения космологической сингулярности (состояния Вселенной до Большого взрыва), ранней инфляции (сверхбыстрого расширения молодой Вселенной) и циклической модели, предложенной нобелевским лауреатом Роджером Пенроузом, согласно которой Вселенная многократно рождается и умирает.
Подход, по мнению ученых, позволит отказаться от упрощающего предположения об однородности и симметричности пространства. Обобщив все имеющиеся данные о применении численной относительности в космологии, Клаф, Лим и Ауррекоэчеа показали, какие перспективы она открывает.
Речь идет о методе, разработанном в 1960-х годах для изучения черных дыр, который в 2005 году позволил впервые численно смоделировать их слияние. В в 2015 году детекторы LIGO и VIRGO зарегистрировали реальный сигнал гравитационных волн — он оказался именно таким, как предсказывали расчеты. Теперь его «перевод» в область космологии может помочь в проверке самых смелых гипотез.
К ним относятся существование космических струн — гипотетических дефектов в ткани пространства-времени, способных порождать гравитационные волны, образование первичных черных дыр и возможные столкновения вселенных. Численная относительность также может пригодиться в решении проблемы так называемой обратной реакции — вопросу о влиянии локальных неоднородностей на эволюцию космоса в целом.
Особенно важна инфляция молодой Вселенной, существование которой предполагает ряд ученых. Поясним: чтобы описать этот процесс с помощью уравнений ОТО, физики вынуждены изначально закладывать в модель однородность и изотропность пространства, в то время как численная относительность позволяет отказаться от этих ограничений.
Таким образом, предложенный метод — не экзотическая «игрушка» для специалистов по черным дырам, а инструмент, потенциально способный изменить наши представления о прошлом и будущем Вселенной. Проблема в том, что такие вычисления требуют колоссальных ресурсов, а значит численная относительность может стать полноценной лишь с появлением еще более мощных суперкомпьютеров.
«Мы надеемся объединить усилия космологов и специалистов по численной относительности. Так первые смогут заниматься вопросами, которые раньше казались недостижимыми, а вторые — применять свои методы к самым захватывающим загадкам Вселенной», — отметили авторы научной работы.
По общепринятой и незыблемой до сих пор версии, Уран и Нептун — ледяные гиганты: основную часть их массы составляют летучие вещества в особом состоянии «горячих льдов». Теперь у планетологов появилась альтернативная гипотеза: они подозревают, что никаких «горячих льдов» внутри них может не быть, а вместо этого есть крупные каменные ядра, окруженные легкой газовой оболочкой.
Концептуальный дизайнер и художник Вадим Кашин создает научно-фантастические произведения, в которых детально проработанные машины и роботы неотделимы от ландшафта и архитектуры. Кашин работает в жанре, который он сам называет AbstractDiving.
Нобелевская неделя 2025 года стартовала в Швеции с премии в области физиологии или медицины. Ее получили ученые из США и Японии.
По общепринятой и незыблемой до сих пор версии, Уран и Нептун — ледяные гиганты: основную часть их массы составляют летучие вещества в особом состоянии «горячих льдов». Теперь у планетологов появилась альтернативная гипотеза: они подозревают, что никаких «горячих льдов» внутри них может не быть, а вместо этого есть крупные каменные ядра, окруженные легкой газовой оболочкой.
Инженеры Unitsky String Technologies Inc. разработали тяговые накопители энергии, которых хватает рельсовому беспилотнику для перевозки морских контейнеров.
Концептуальный дизайнер и художник Вадим Кашин создает научно-фантастические произведения, в которых детально проработанные машины и роботы неотделимы от ландшафта и архитектуры. Кашин работает в жанре, который он сам называет AbstractDiving.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии