• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
14.11.2017, 19:36
Редакция Naked Science
459

Физики уточнили время фотоэмиссии электрона

Шведские физики измерили время, которое электрон затрачивает на то, чтобы преодолеть потенциальный барьер и покинуть пространство, где его удерживает притяжение ядра. Оказалось, что на это электрон тратит всего двадцать миллиардных миллиардной доли секунды.

femtosnapsho
©Wikipedia / Автор: Анастасия Кожевникова

Исследователи из университетов Лунда, Стокгольма и Гетенбурга уточнили измерение времени фотоэмиссии электронов — очень короткого отрезка времени, за который электрон успевает удалиться от ядра на расстояние, когда притяжение протонов уже не действует.

 

Фотоэлектронной эмиссией называется физическое явление, при котором электроны вещества поглощают кванты электромагнитного излучения и приобретают энергию, позволяющую преодолеть потенциальный барьер и покинуть пределы действия кулоновского притяжения зарядов электрона и атомного ядра. Эмиссия электрона под действием электромагнитного излучения приводит к фотоионизации вещества под действием электромагнитных волн. За теоретическое обоснование эффекта фотоионизации Альберт Эйнштейн получил в 1921 году Нобелевскую премию, а за несколько десятилетий до его исследований эффект открыли Генрих Герц и Александр Столетов.

 

Процесс удаления электрона от атома долгое время считался мгновенным, но в 2008 году было доказано, что между поглощением кванта света и эмиссией электрона существует ничтожная, но все-таки измеримая задержка; ее продолжительность зависит от конфигурации ядра и электронной оболочки атома и того, на каком энергетическом уровне находился электрон.

 

Как и все процессы, происходящие в субатомных масштабах, фотоэмиссия занимает время, которое измеряется аттосекундами — квинтиллионными долями секунды. Скорость таких процессов измеряют с помощью сверхбыстрых лазеров, дающих короткие импульсы жесткого ультрафиолета каждые несколько аттосекунд (10–18 с). Скорость фотоэмиссии уже измерялась с помощью аттосекундных лазеров; тогда излучению подвергали атомы гелия.

 

На этот раз ученые выбрали неон — легкий элемент, в котором возбуждаться и отделяться от ядра способны только восемь электронов, расположенных на 2s и 2p-орбиталях. Измерив с высокой точностью энергию ионизированных ультрафиолетом атомов неона, физики измерили задержку между поглощением кванта света и испусканием электрона для всех энергетических уровней, разрешенных в атоме неона. Результаты измерений в точности совпали с теоретическими расчетами.

 

Совпадение экспериментальных результатов с расчетными в этом эксперименте — большой прорыв; после этого можно переходить к изучению динамики электронов в более сложных атомах и молекулах. В перспективе такие измерения должны стать мощным инструментом для ученых, в деталях изучающих химические процессы, в том числе и в сложных органических молекулах.

 

Исследование опубликовано в журнале Science.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

17 ноября, 09:26
Адель Романова

Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.

17 ноября, 08:45
Любовь С.

Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.

15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

15 ноября, 10:10
Любовь С.

Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.

14 ноября, 11:27
Илья Гриднев

На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно