Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#оптоволокно
Стартап «Фистех», созданный на базе Сколтеха, впервые в России сконструировал и успешно протестировал фотонные интегральные схемы (ФИС) для работы с высокочастотными сигналами с шириной полосы до 22 гигагерца. Разработка нацелена на обеспечение российских производителей телекоммуникационными решениями на базе отечественных ФИС.
Современные оптоэлектронные устройства используют активные оптические волокна, легированные редкоземельными металлами. Их производство начинается с создания стеклянных заготовок с добавками, требующих точного контроля формы, светопропускания и распределения примесей. Традиционные методы предполагают последовательные измерения на разных приборах, что дорого и трудоемко. Ученые ПФИЦ УрО РАН и Пермского Политеха разработали автоматизированный стенд для одновременной оценки всех ключевых параметров. Новый метод ускоряет производство на десятки процентов, повышая качество продукции.
Россия занимает третье место в мире по количеству неутилизированного пластика. Такие отходы оседают в водоемах или на незаконных стихийных свалках. Среди них есть остатки оптоволокна, состоящие из стекла и пластика, которые будут загрязнять почву и водные ресурсы. При разложении под воздействием ультрафиолетовых лучей материалы выделяют токсичные вещества: свинец, мышьяк и кадмий. Попадая в пищевую цепочку, они наносят вред здоровью человека, например, замедляют интеллектуальное развитие, провоцируют новообразования, сердечно-сосудистые болезни и анемию, поражение центральной нервной системы и другие болезни. Ученые Пермского Политеха нашли эффективный способ утилизации остаточных продуктов оптоволокна, используя его в строительстве автодорог, мостов и аэродромов. Это позволит сократить негативное воздействие на окружающую среду и при этом повысить прочность строительного материала.
В нефтегазовой и химической промышленности, металлургии, электроэнергетике, медицине и машиностроении используют оптоволоконные технологии как современный способ передачи информации на дальние расстояния. Прочность и долговечность волоконных световодов во многом зависят от защитного покрытия, в качестве которого используют акрилат, полиимид и металлы. Например, оптоволокно в алюминиевом покрытии позволяет работать в жестких промышленных условиях при высоких температурах и давлении. Однако применение алюминия эффективно лишь до 350 градусов. Альтернативой может стать использование меди. Ученые Пермского Политеха, ПАО «Пермской научно-производственной приборостроительной компании» и Института общей физики имени А. М. Прохорова РАН впервые детально исследовали термическую стойкость волоконных световодов в медном покрытии и определили их срок службы в зависимости от температуры эксплуатации. Полученные результаты дают возможность прогнозировать стабильность работы оптоволокна в отечественной промышленности.
В аэрокосмической сфере применяют сенсорную технику для оценки внешних силовых воздействий на аэродинамическую поверхность. Это могут быть удары града, бетонной крошки из-под переднего колеса при взлете самолета, частицы космического мусора и так далее. Научное сообщество стремится усовершенствовать индикаторные и тактильные полимерные покрытия. Ученые Пермского Политеха исследовали закономерности реакции тактильной поверхности сенсорной техники на внешнее воздействие. Это позволит улучшить систему мониторинга и снизить риски возникновения аварийных ситуаций из-за нестабильной работы датчиков.
При малотравматичных терапевтических операциях, лечении сосудистых патологий и рака в качестве источника излучения или тепла применяют волоконно-оптические рассеиватели. Для их эффективной работы необходимо обеспечить равномерное распределение излучения вдоль волокна. Для этого ученые Пермского Политеха разработали математическую модель, которая поможет правильно рассчитать необходимые параметры.
Волоконная оптика — одна из перспективных и быстроразвивающихся наукоемких отраслей промышленности. Кварцевые волокна, передающие световые сигналы на большие расстояния, активно применяются в сферах коммуникации, навигации, медицины и приборостроения. Но их изготовление — очень сложный и дорогостоящий процесс. Особенно это касается нового типа оптоволокна, сердцевина которого окружена множеством воздушных отверстий. Такие дырчатые микроструктуры расширяют и улучшают функциональные возможности оптических технологий. Их основу составляют капилляры, полученные путем вытягивания из кварцевых заготовок. При этом для получения качественного продукта важно сохранить все геометрические пропорции и формы волокна, чтобы не допустить дефектов. Ученые Пермского Политеха разработали модель, которая обеспечивает постоянный контроль параметров и на 10 процентов снижает нарушения в процессе вытяжки капилляров. Подход повышает качество и стабильность изготовления оптоволокна.
Одна из основных причин, по которым автомобильные дороги приходится часто ремонтировать, — образование поверхностных дефектов. Общий вес только одного большого грузовика может достигать 40 тонн. Во время эксплуатации асфальтобетона происходит его сжатие и растяжение, это усложняет задачу повышения прочности всего дорожного слоя. Существующие методы сегодня недостаточно эффективны, поэтому поиск новых материалов и технологий для улучшения долговечности дорог остается актуальным. Ученые Пермского Политеха предложили укрепить асфальтобетон отходами оптического волокна. Стабильные размеры и химический состав позволяют использовать их в качестве сырья для получения армирующего компонента, способного повысить устойчивость дорожного покрытия к сжимающим и растягивающим нагрузкам.
В коммуникационных технологиях, навигации, медицине, нефтегазовой промышленности и даже в космосе для передачи больших объемов информации на дальние расстояния используют оптоволокно. Качество передаваемого сигнала напрямую зависит от наконечника, который механически выравнивает и соединяет концы кварцевых волокон между собой. Оптоволокно должно быть хорошо зафиксировано в наконечнике, чтобы не допустить затухания сигнала и потери информации. Ученые ПНИПУ разработали эффективный способ его крепления в нужном положении с помощью гидрогеля из плавленого кварца и щелочи. Технология обеспечит надежное соединение волоконных линий и лучшую передачу светового сигнала.
Для безопасности, экономии ресурсов и улучшения производительности необходим постоянный мониторинг состояния зданий, мостов и рабочих механизмов конструкций. Для этого используют различные датчики, а в последнее время активно развивается направление, в котором оптоволокно применяют в качестве линии передачи данных и чувствительного элемента — части датчика, которая преобразует информацию извне в электрические сигналы. Ученые Пермского Политеха выяснили, как сделать более тонкое покрытие оптоволокна, чтобы минимизировать габариты изделий и при этом сохранить качественную защиту от внешних агрессивных условий.
Растущие требования к скорости передачи данных и постоянному доступу к информации со всех уголков планеты приводят к увеличению использования телекоммуникационных сетей и устройств. Но если оборудование расположено на больших расстояниях от источника электропитания, то возникают трудности с его подключением и стабильной работой. Для решения этой проблемы сейчас активно внедряют технологию передачи энергии по оптическому волокну. Она обеспечивает высокую скорость и качество отправляемых и получаемых данных, а также невосприимчива к электромагнитным помехам, обладает высоким уровнем устойчивости к пожарам и ударам молний. Ученые Пермского Политеха разработали цифрового двойника ключевого элемента системы — отправную точку для построения модели всей технологии. Его использование может быть востребовано для мониторинга концентрации легковоспламеняемых газов на взрывоопасных объектах или тока и напряжения ВЛЭП, что улучшит технические характеристики, предотвратит возгорание, сохранит жизни людей и сэкономит деньги предприятиям.
Волоконно-оптические датчики активно используют в мире для определения деформаций на поверхности конструкций, например, при мониторинге зданий, ангаров и мостов. Благодаря научному сообществу скоро будет возможно и внутри изделий контролировать дефектообразование с помощью оптоволокна. Сейчас изучается возможность их внедрения в композиционные материалы. Однако здесь важно учитывать специфику изготовления деталей из композитов и характеристики самих приборов. Сегодня на производстве не оценивают технологические деформации изделий таким способом. Ученые ПНИПУ предлагают внедрять волоконно-оптические датчики внутрь полимерной композиционной конструкции и получать данные о нарушениях, сохраняя при этом все эксплуатационные свойства. Такой способ позволит предсказывать возможное разрушение детали в процессе ее создания.
Изменения температуры значительно влияют на свойства полимерных композитных конструкций, например, аэрокосмической техники. Если не отслеживать показатели, то время эксплуатации деталей может сильно сократиться из-за перегрева или обледенения, а поломки застанут врасплох. Эффективный способ преодолеть проблему – устанавливать температурные датчики. Есть датчики, которые передают информацию в виде оптических сигналов, быстро преодолевая большие расстояния. Это помогает в удаленном мониторинге и управлении техникой. Ученые Пермского Политеха разработали математическую модель полимерного покрытия со встроенным оптоволоконным датчиком для отслеживания температуры, локации и самоочистки участков обледенения аэродинамических поверхностей.
Оптическое волокно все чаще используют в самых разных отраслях: в машиностроении, в авиа- и ракетостроении, медицине и других областях. Применение высокотехнологичных оптоволокон позволяет отправлять большие объемы информации на дальние расстояния и устанавливать быстрое и стабильное интернет-соединение. Также их применяют в качестве датчиков для определения температуры, давления и других параметров. Но на сегодняшний день малоизученным остается эффект оптического пробоя волокна, который заключается в возникновении внутри него плазменной искры. Она возникает при различных дефектах внутри оптоволокна, выжигая его сердцевину, после чего волокно становится непригодным для использования, а устройство, в котором оно находилось, выходит из строя.
Оптоволокно продолжает набирать популярность из-за способности мгновенно передавать данные на большие расстояния без потерь и с высокой скоростью. Малые габариты, низкое энергопотребление, устойчивость к перепаду температур и агрессивным средам позволяют использовать стеклянные волокна для оптических датчиков, лазеров, гироскопов, сбора информации в нефтяных скважинах и даже в космосе. В связи с этим требования к материалу по прочности, радиационной стойкости, температуре эксплуатации и иным свойствам постоянно возрастают. Для повышения надежности оптического волокна все чаще используют полимерное покрытие. Ученые Пермского Политеха рассмотрели процесс нанесения укрепляющего состава на волокно и разработали модель, которая позволит рассчитать необходимую толщину покрытия.
Одним из перспективных направлений в развитии передовых наукоемких отраслей промышленности является производство оптических волокон. Однако, как и любой производственный процесс, изготовление волокна сопровождается внешними возмущениями, которые нельзя предсказать заранее, но они могут негативно сказаться на его качестве, в частности на сохранении его геометрии и свойств. В этой связи важно не просто смоделировать процесс, но и проследить, насколько он чувствителен к случайным воздействиям. Поэтому ученые Пермского Политеха разработали математическую модель вытяжки специальных кварцевых волокон и провели анализ устойчивости, что позволило определить стабильные режимы производства.
Сегодня при строительстве зданий и создании легких дорожных покрытий используют альтернативный материал – полупрозрачный бетон, который состоит из бетона и оптоволокна. Он способен пропускать свет, что позволяет воплощать уникальные архитектурные решения. Но оптоволокно – достаточно дорогостоящий материал. Ученые Пермского Политеха предложили получать более дешевый бетон с высокой способностью пропускать свет из отходов оргстекла. Это позволит повысить качество материала и сэкономить средства компаний. Цветовая разметка на дорогах на основе этого материала сможет существенно снизить число аварий в темное время суток.
Оптоволокно — это стеклянные нити, позволяющие передавать световой сигнал на большие расстояния без потерь и с высокой скоростью. Малые габариты, низкое энергопотребление, устойчивость к перепаду температур и агрессивным средам позволяют использовать кварцевые волокна для лазеров, гироскопов, передачи данных в нефтяных скважинах и даже в космосе. В связи с этим, требования к оптоволокну по прочности, радиационной стойкости, температуре эксплуатации и иным свойствам постоянно возрастают. Ученые Пермского Политеха совместно с коллегами из ИФМ УрО РАН города Екатеринбурга собрали экспериментальную установку, которая позволила исследовать воздействие магнитного поля на плазменную искру, движущуюся в оптическом волокне. Результаты исследования помогут в разработке методик формирования внутриволоконных микроскопических структур, на основе которых можно создавать чувствительные оптические датчики или рассеиватели излучения.
- 1
- 2
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии