Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#компьютерное зрение
В легкой промышленности более 60 процентов товарной продукции занимают текстильные изделия. На производстве тканей часто возникают различные внешние дефекты (дыры, неравномерное окрашивание полотен), которые сложно своевременно обнаружить. Из-за этого большая часть материала впоследствии выбрасывается или уходит на переработку, что очень затратно. Обеспечить контроль качества продукции в наше время можно методами компьютерного зрения, которые по фото- и видеосъемке обрабатывают изображения и считывают брак в изделии. Но существующие прототипы таких решений учитывают не все возможные изъяны, часто встречающиеся в промышленности. Ученые ПНИПУ усовершенствовали метод компьютерного зрения для быстрого и точного выявления дефектов на производстве.
Серьезный вызов для современного здравоохранения во всех странах мира — это кадровый вопрос, и особенно во время эпидемий: тогда больницы и поликлиники настолько перегружены, что медработники сами нуждаются в помощи. И здесь на подмогу врачам приходят алгоритмы искусственного интеллекта. Сегодня они способны диагностировать множество заболеваний, распределять потоки пациентов, ухаживать за ними, а также помогать лечащим врачам принимать правильные и своевременные решения. Как нейросети, предиктивная и видеоаналитика используются в больницах — в новой статье цикла Naked Science про ИИ и его влияние на наше общество.
Чтобы очистить ценные полезные ископаемые от пустой породы и отделить минералы друг от друга, используют различные методы обогащения. Их применяют при обработке калия, полиметаллов и угля. Ученые Пермского Политеха предложили технологию, которая улучшит контроль за этим процессом. С помощью компьютерного зрения можно будет исключить человеческий фактор и повысить качество готового продукта, увеличив доходы предприятий. Разработка также уменьшит содержание вредных веществ в отходах производства.
Ученые Сколтеха разработали метод обучения алгоритмов компьютерного зрения, повышающий точность обработки данных при наличии ограниченных исходных выборок. Благодаря новому методу решение различных задач дистанционного зондирования станет проще не только для компьютеров, но в перспективе и для пользователей данных.
Исследователи Сколтеха придумали, как с помощью химических сенсоров и компьютерного зрения определить, правильно ли приготовлена, например, курица-гриль. Этим методом смогут воспользоваться повара ресторанов для контроля и автоматизации процессов приготовления пищи. Не исключено, что когда-нибудь такие функции появятся и в домашних «умных» духовках. Еще одним возможным применением нового датчика может стать распознавание испорченного мяса на этапе, когда человеческое обоняние еще не способно уловить изменения в его запахе.
Ученые из группы iMolecule Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) разработали алгоритм машинного обучения для поиска у белков сайтов связывания с лекарствами – потенциальных лекарственных мишеней. Алгоритм BiteNet за полторы минуты может проанализировать тысячу белковых структур и найти оптимальные места для присоединения лекарственных молекул.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии