Физика будущих войн: от инфразвука до нейтрино — Naked ScienceNaked Science
12.10.2016, 19:52
2 9 минут
Naked Science
131

Физика будущих войн: от инфразвука до нейтрино

Военные всегда рассматривали физику как способ достижения победы над противником. Основанная на математических и физических законах баллистика со времен наполеоновских войн стала «богом войны». В прошедшем веке атомная физика дала военным ядерное и термоядерное оружие. Но потенциал ученых-физиков еще не исчерпан. Как считают специалисты, на очереди новые виды оружия и средства ведения войн. Как далеко продвинулись ученые, выполняя желания военных, и на каких принципах основаны их разработки, мы сегодня и посмотрим.

00436849576457
От лазера до гразера

 

Фантастические фильмы, в которых герои используют лазерное оружие, появились настолько давно, что даже слово «бластер», обозначающее лазерный пистолет, уже кажется чем-то совсем старомодным. Тем не менее, по эту сторону киноэкрана лазерное оружие так и не используется. О нем забыли? Нет. Вот для начала две практические реализации лазерных технологий.

 

 

А-60 /© russianplanes.net

 

Работы по созданию авиационного лазера велись и в США. Сейчас они остановлены. Boeing YAL-1, оснащенный мощным бортовым лазером, предназначался для перехвата баллистических и крылатых ракет. Несмотря на успешные испытания (в 2010 году лазером были уничтожены две учебные ракеты), в 2011 году проект закрыли. Даже учитывая то, что мощность кислородно-иодного лазера довели до одного мегаватта, в условиях реальных боевых действий от него все-таки пользы будет немного. Мощности лазерного луча хватает только на то, чтобы разогреть обшивку ракеты до критической температуры, а дальше уже происходит ее самостоятельное разрушение. Но если ракета будет вращаться в полете или будет покрыта теплозащитным покрытием, то лазер уже будет бесполезен. И даже в случае поражения цели эффектных взрывов а-ля «звездные войны» ждать не приходится.

 

Boeing YAL-1/© wikipedia.org

 

Тем не менее, в американской армии лазерное оружие может появиться уже к 2025 году. 10-киловаттную лазерную пушку High Energy Laser Mobile Test Truck (HELMTT), которую можно размещать на армейских бронированных грузовиках, в США испытали этой весной на военной базе Форт Силл, расположенной в штате Оклахома. По заверениям специалистов, ее лазер достаточно мощен, чтобы сбивать беспилотники и уничтожать мины. К 2020 году его мощность планируют увеличить до 100 киловатт. Менее мощные 2-киловатные лазеры разрабатывают и планируют устанавливать на легкие бронетранспортеры Stryker. Есть серьезные планы по использованию лазеров и в ВМС США. В конце 2015 года военно-морское ведомство США подписало с корпорацией Northrop Grumman контракт на разработку 150-киловаттного лазера. Лазерная пушка, экспериментальная модель которой испытывается сейчас, имеет мощность только 30 киловатт.

 

HELMTT /© whoswhos.org

 

Нужно сказать, что физическая основа работы любого лазера – существование явления вынужденного излучения. В результате этого явления происходит усиление света, а следовательно, появляются новые возможности его применения, от лазерных указок до промышленной сварки. Свет, как мы знаем из физики, – это электромагнитное излучение, воспринимаемое человеческим глазом. Но светом, к которому оптика также относит и ультрафиолетовое и инфракрасное излучения, спектр электромагнитного излучения не ограничивается. Выход за пределы оптического диапазона, а точнее, в более коротковолновой диапазон, позволит в теории создать более мощные лазеры, обладающие разрушительной силой. Здесь стоит сказать, что первым «лазером» в привычном понимании этого слова был мазер – устройство, в котором с помощью вынужденного излучения осуществлялось усиление микроволн, лежащих в спектре за инфракрасным излучением. Его создали в 1954 году. Спустя шесть лет появился и первый оптический лазер. Дальнейшие работы ведутся в направлении рентгеновского и гамма-излучения.

 

Попытки создать боевой рентгеновский лазер (разер) предпринимались в США еще во время холодной войны. Проект рентгеновского «меча» получил название «Экскалибур».

 

Но только такому лазеру требуется поистине фантастическая энергия. И получить ее можно было только от ядерного взрыва. Испытания рентгеновского лазера с ядерной накачкой прошли в марте 1983 года на полигоне в штате Невада. По некоторым данным, проводились подобные исследования  и в Советском Союзе. Но полученные результаты не были удовлетворительными. В наше время рентгеновский лазер пытаются создать на основе другой технологии. Это так называемый рентгеновский лазер на свободных электронах. Но его планируется применять только в гражданских целях. Во всяком случае пока. Гамма-лазеры, или «гразеры» (от Gamma Ray Amplification by Stimulated Emission of Radiation), – это уже потенциальное сверхмощное оружие гамма-диапазона. Исследователи, которые вели разработку возможности создания гамма-лазеров, считают, что с их помощью можно защитить Землю от возможных угроз из космоса – например, от астероидов, движущихся к нашей планете. Энергия такого лазера будет в 100–10 000 раз больше, чем у оптических лазеров.

 

Инфразвуковое оружие

 

Поражать противника звуковыми волнами, выводить из строя тысячи солдат без единого патрона либо просто заставить их в панике бежать с поля боя – мечта военных всего мира. Применение акустического оружия позволит экономить на боеприпасах и проявлять показную гуманность.

 

Так же, как мы не видим большую часть спектра электромагнитного излучения, так же мы и не слышим значительную часть звуковых колебаний. Как правило, человеческое ухо может воспринимать звуковые колебания в диапазоне частот от 16–20 Гц и до 15–20 кГц. Звук ниже этого диапазона называется инфразвуком, а выше – ультразвуком. То, что наше ухо не способно услышать инфразвук, совсем не означает, что его не «слышат» разные органы нашего тела. Частоты колебаний множества процессов в нашем организме находятся в том же частотном диапазоне, что и инфразвук. При их совпадении, например в случае преднамеренного внешнего воздействия, происходит резкое возрастание амплитуды вынужденных колебаний. Это может привести к нарушению работоспособности внутренних органов или даже к их разрыву. В случае с сердцем результатом может стать летальный исход. Все это дает теоретическую основу для создания инфразвукового оружия.

 

Но, как правило, основные разработки идут в направлении нелегального оружия. Воздействие на человека достаточно сильным инфразвуком способно вызвать в одном случае тревогу, страх и панику, в другом – тошноту, звон в ушах, болевые ощущения. В любом случае это вынуждает человека покинуть место применения оружия. Казалось бы, вот здесь и стоит привести примеры поставленного на вооружение инфразвукового оружия или рассказать об испытаниях. Но информация об этом, вероятно, тайна за семью печатями. Об этом говорят, но ничего не показывают. Пожалуй, единственный реальный пример использования такого оружия – «акустическая бомба», которая была применена NATO во время операции в Югославии. Вызванные ею колебания очень низкой частоты привели к панике, но лишь на кратковременный период.

 

В часто появляющихся в СМИ сообщениях о применении инфразвукового оружия на самом деле имеются в виду другие виды акустического оружия. Например, такое успешно применяется при разгоне демонстраций или против сомалийских пиратов. Сильный звук, имеющий частоту 2–3 кГц, является очень сильным раздражителем и способен дезорганизовать и вывести противника из психического равновесия. Но он, в отличие от инфразвука, находится в диапазоне слышимых волн.

 

Не стоит забывать, что в диапазоне 7–13 Гц находится так называемая «природная волна страха». Инфразвук имеет гораздо меньший, чем другие звуковые колебания, показатель поглощения в различных средах, вследствие чего инфразвуковые волны распространяются на большие расстояния. Именно инфразвук является первым предвестником стихийных бедствий: землетрясений, тайфунов, извержений вулканов. Так, при землетрясениях инфразвук генерируется земной корой, что и позволяет многим животным чувствовать его заранее и покидать места ожидаемого бедствия или проявлять видимое беспокойство, если уйти нет возможности. Человек, как правило, неожиданному чувству беспокойства значения не придает. Тем не менее, эта природная особенность положена в основу оружия, вызывающего страх. К слову, инфразвук – одна из вероятных разгадок тайны Бермудского треугольника.  

 

Рельсотрон

 

Теоретический предел начальной скорости артиллерийского снаряда составляет около 2 км/с. Но на практике и он не достижим. В новый век высоких скоростей военные требуют от ученых большего. И, возможно, уже совсем скоро вместо обычных артиллерийских орудий появятся электромагнитные пушки. Рельсотрон, или как его называют в США рейлган, с позиции физики является электромагнитным ускорителем масс. Другой разновидностью такого ускорителя является «пушка Гаусса», но это устройство считается не вполне эффективным в случае практического воплощения.

 

Преимущества рельсотронов перед обычной артиллерией, конечно, очевидны. Цель, поставленная американскими военными перед разработчиками, – создать электромагнитную пушку, способную разогнать снаряд до скорости 5,8 км/с. Такая пушка должна иметь способность за шесть минут поразить цель диаметром 5 метров, находящуюся на расстоянии 370 километров. Это в 20 раз превышает показатели стрельбы имеющегося сейчас на вооружении ВМС США артиллерийского вооружения. Кроме того, надо понимать, что такие снаряды не содержат в себе взрывчатки, их беспрецедентная бронебойная сила заключается только в кинетической энергии снаряда, выпущенного со сверхвысокой скоростью. Корабли, на которых планируется размещать такое вооружение, будут более безопасными за счет меньшего количества находящихся на них взрывчатых веществ.

 

Испытания рельсотрона в США /© wikipedia.org

 

 

Стоит сказать, что рельсотрон не обязательно должен стать игрушкой в руках военных. При достижении скорости 7,9 км/с (первая космическая скорость) он может применяться для вывода спутников на околоземную орбиту.

 

В России также занимаются разработкой рельсотронов. Первые публичные испытания прошли летом этого года в Шатурском филиале Объединенного института высоких температур РАН. На демонстрационных испытаниях была достигнута скорость снаряда в 3,2 км/с. Но, по словам Президента РАН Владимира Фортова, присутствовавшего на испытаниях, максимум, который удалось извлечь из устройства, – 11 км/с. Правда, в нашем случае ученые о военном применении рельсотрона не говорят. Как заявил Фортов, перед учеными академии наук стоят три задачи: получение системы с большими давлениями и изучение с их помощью Вселенной, защита планеты от высокоскоростных космических тел и вывод спутников на орбиту.

 

Принцип действия сил Лоренца в рельсотроне /© wikipedia.org

 

Как ясно из названия, для разгона снаряда в рельсотроне (электромагнитной пушке) используется электромагнитная сила. Рельсотрон представляет собой пару параллельных электродов (рельсов), подключенных к источнику мощного постоянного тока. Снаряд, который является частью электрической цепи (проводник), приобретает ускорение благодаря силе Лоренца, выталкивающей его и разгоняющей до сверхвысоких скоростей.

 

Владимир Фортов на испытаниях отечественного рельсотрона /© novostimo.ru

 

Нейтринная связь

 

Любая передача информации на расстоянии основывается на том или ином физическом явлении. Радиосвязь в качестве носителя сигнала использует радиоволны с длиной волны от 0,1 миллиметра. Ведутся эксперименты в области применения лазерной связи. Особенно она будет востребована для передачи информации в космическом пространстве. Если когда-нибудь мы откроем тахионы (если это вообще возможно) и сможем поставить их себе на службу, то тахионная связь, передающая информацию со сверхсветовой скоростью, станет основой сверхдальней космической связи. Но это уже будущее звездных войн следующего столетия. Сейчас же перед учеными стоят более прозаичные задачи, им бы с подводными лодками разобраться.

 

Нейтрино – нейтральная фундаментальная частица, относящаяся к классу лептонов и участвующая только в слабом и гравитационном взаимодействии. К лептонам относится, в частности, электрон, но не относятся протон и нейтрон, это уже барионы. Особенность нейтрино в том, что оно чрезвычайно слабо взаимодействует с веществом. Этой частице ничего не стоит пролететь нашу планету насквозь, при этом ее ничто не задержит. Для связи с подводными лодками, месяцами несущими боевое дежурство в глубинах океана, такая связь подходит как нельзя лучше. Морская соленая вода – хороший глушитель для радиосигнала. А всплывать, чтобы его принять, это значит позволить противнику себя обнаружить. Для связи с подводными лодками сейчас используют сверхдлинные радиоволны, длина которых больше десяти километров. В нашей стране обеспечивает связь с подводными лодками 43-й узел связи ВМФ России (радиостанция «Антей»). Благодаря своим гигантским размерам радиостанция получила название «Голиаф». Правда, не у нас, а в Германии, откуда и была вывезена после войны в качестве трофея.

 

Итак, нейтрино способно преодолеть любые расстояния и препятствия. Даже если понадобится доставить сигнал на лунную базу на обратной стороне нашего спутника, то оно спокойно пройдет сквозь Луну. Вот только эта положительная особенность и не позволяет пока полностью приручить эту частицу. Практически не взаимодействуя с веществом, она также и не поддается в полной мере «поимке». Как нейтринная связь будет реализована в реальности, пока неизвестно. Но есть весьма интересные предложения по этому поводу. К примеру, исследователи из политехнического университета Вирджинии предлагают наладить для начала одностороннюю связь с подводными лодками. Передатчиком будет служить накопительное мюонное кольцо, которое обеспечит поток нейтрино интенсивностью 1014 частиц в секунду. Пройдя сквозь планету, незначительная часть нейтрино должна прореагировать с веществом (ядрами атомов в молекуле воды), в результате образуются высокоэнергетические мюоны, которые, в свою очередь, вызовут в воде слабое сияние (черенковское излучение). Оно-то и будет зарегистрировано сверхчувствительными фотодетекторами на подводной лодке.

 

Передатчик нейтрино – мюонное кольцо/© www.newswise.com

 

Скорость передачи по такому каналу будет составлять 10 бит в секунду. Это немало, если сравнить с тем, что имеется сейчас. Радиоканал, использующий мириаметровые (длина волны 10–100 км) волны очень низкой частоты (ОНЧ/VLF), имеет пропускную способность 50 бит в секунду. Вот только для того чтобы принять такой сигнал, субмарина должна либо подвсплыть до глубины 20 метров, либо выпустить буй с антенной на длинном кабеле. Вся эта процедура повышает риск обнаружения подводной лодки и ограничивает ее маневренность. При использовании декамегаметровых волн (10000–100000 км) крайне низкой частоты (КНЧ/ELF) лодка может и не всплывать, но скорость передачи сигнала составляет всего 1 бит в минуту.

Сегодня, 15:27
2 минуты
Мария Азарова

Тилль Линдеманн в рамках проекта Lindemann выпустил клип, в создании которого участвовал искусственный интеллект.

19 октября
6 минут
Полина Гершберг

Серия землетрясений разбудила «спящий» тектонический разрыв. Изучение этого явления показало, что мощные подземные толчки в некоторых регионах почти невозможно прогнозировать.

Сегодня, 15:29
5 минут
Полина Гершберг

Недостаток аллопрегнанолона у беременной женщины может вызывать нарушения в развитии головного мозга ее ребенка.

17 октября
4 минуты
Илья Ведмеденко

Согласно представленным данным, вместо космического аппарата «Космос-2535» на орбите сейчас находятся пять объектов.

16 октября
3 минуты
Никита Шевцов

Биологи обнаружили вирус, который не может самостоятельно заражать клетки. Предполагается, что он пользуется помощью других вирусов.

16 октября
2 минуты
Илья Ведмеденко

Ученые сравнили состояние мозга женщин, имеющих детей, и тех, у кого их никогда не было. Выводы оказались более чем интересны.

17 октября
4 минуты
Илья Ведмеденко

Согласно представленным данным, вместо космического аппарата «Космос-2535» на орбите сейчас находятся пять объектов.

16 октября
3 минуты
Никита Шевцов

Биологи обнаружили вирус, который не может самостоятельно заражать клетки. Предполагается, что он пользуется помощью других вирусов.

16 октября
2 минуты
Илья Ведмеденко

Ученые сравнили состояние мозга женщин, имеющих детей, и тех, у кого их никогда не было. Выводы оказались более чем интересны.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.