Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Монокристаллы превратили в «интерфейсный» сверхпроводник
Американские ученые экспериментально доказали возможность управления сверхпроводимостью на границе раздела в несверхпроводящем материале при атмосферном давлении. Результаты работы опубликованы в журнале Proceedings of the National Academy of Sciences.
Сверхпроводники — материалы (обычно медь- и железосодержащие) с нулевым электрическим сопротивлением. В существующих приложениях, например магнитно-резонансной томографии (МРТ) и маглевах, сверхпроводимость достигается путем охлаждения сплава до примерно -269 градусов Цельсия и его обработки под высоким давлением. Такая технология является дорогой и энергоемкой, что ограничивает коммерческое распространение сверхпроводников. Поэтому ученые ищут способы приблизить критические температуры (Tcs) сверхпроводников к комнатной, а давление — к атмосферному.
Один из способов заключается в том, чтобы искусственно создать сверхпроводимость на границе раздела, или интерфейсе, несверхпроводящего регулярного материала. Эта модель была предложена еще в 1973 году, но до сих пор не подтверждена экспериментально. Индуцировать сверхпроводимость на границе раздела удавалось только в системах из двух различных несверхпроводящих, двух сверхпроводящих или одного сверхпроводящего и одного несверхпроводящего материала.
В своем эксперименте ученые из Хьюстонского университета использовали арсенид железа кальция (CaFe2As2 (Ca122)) с кристаллической структурой типа ThCr2Si2. Прежние работы показали, что монокристаллы Ca122 могут стать сверхпроводящими при -224 градусах Цельсия и атмосферном давлении в результате допирования — частичного замещения кальция на редкоземельные элементы, например лантан или празеодим. Предполагалось, что сверхпроводимость в этом случае — именно результат спонтанно возникающих границ раздела. Для проверки гипотезы авторы помещали недопированные монокристаллы CaFe2As2 в кварцевую ампулу и подвергали их отжигу при температуре 350 градусов Цельсия. Спустя 7,5, 11, 14,5, 18, 28 и 50 часов они изучали структуру, магнитную восприимчивость и удельное сопротивление материала.
Результаты показали, что сверхпроводимость возникает в определенном временном интервале — между четырьмя и 16 часами с пиком через 7,5 часа. При этом она стала результатом встречи двух различных (несверхпроводящих) фаз: немагнитной металлической (cT) и антиферромагнитной (O) между фазовыми переходами (PI, PII). Динамика показателей коррелировала с критической температурой (около -248 градусов Цельсия). По словам ученых, полученные данные являются прямым доказательством сверхпроводимости, возникающей в результате пересечения фаз в Ca122, и гипотезы о границе раздела в целом.
Следующим шагом станет улучшение границы разделов других высокотемпературных сверхпроводников, отметили авторы. Возможность адаптировать такие материалы к нормальным средовым условиям позволит снизить стоимость технологии. Помимо медицины и транспорта, высокотемпературные сверхпроводники также могут использоваться для более эффективного электроснабжения жилого фонда, поскольку не теряют электроэнергию при передаче.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Измеряя активность медиальной части префронтальной коры участников эксперимента, ученые выяснили, что для одиночек почти не существовало разницы между настоящими друзьями и любимыми вымышленными героями.
Кому не доводилось слышать наставлений получше мыть за ушами и между пальцами ног? Ученые проверили эту житейскую мудрость и подтвердили, что совет действительно верный.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.
Исследователи из Швеции и Великобритания узнали, что «правило деревьев» да Винчи, который считал, что толщина всех веток дерева на любой его высоте, сложенная вместе, равна толщине ствола, ошибочно на микроуровне.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии