Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научится оптимизировать дорожный трафик и снижать загрязнение воздуха
Искусственный интеллект, обеспечивающий плавный трафик машин, следящий за расходом топлива и предотвращающий загрязнение воздуха, — звучит из серии научной фантастики. Тем не менее работники Национальной лаборатории им. Лоуренса в Беркли намерены претворить это в жизнь.
Ученые дали старт двум исследовательским проектам, призванным снизить загрязнение окружающей среды и оптимизировать движение машин на дорогах. Первый проект посвящен попыткам обучить автономные транспортные средства работать так, чтобы одновременно улучшить поток движения и сократить потребление энергии. Второй проект анализирует спутниковые изображения и информацию о дорожной ситуации, полученную с мобильных телефонов, и обучает искусственный интеллект следить за состоянием воздуха. Описание проектов доступно на сайте лаборатории.
«Тридцать процентов использования энергии в США — это транспортировка людей и товаров, это потребление энергии сильно загрязняет воздух. Сюда входит примерно половина всех выбросов оксидов азота и черного углерода (сажи). Применение технологий машинного обучения для использования в сфере транспорта и защиты окружающей среды — новый рубеж, который может принести значительные дивиденды как для экономии энергии, так и для здоровья человека», — утверждает член исследовательской группы Том Кирхстеттер (Tom Kirchstetter).
Проект, посвященный оптимизации трафика, получил название CIRCLES (Congestion Impact Reduction via CAV-in-the-loop Lagrangian Energy Smoothing) и основан на программной платформе под названием Flow — первой в своем роде программной системе, которая позволяет исследователям создавать и тестировать схемы оптимизации трафика. Используя современный микросимулятор с открытым исходным кодом, Flow может имитировать движение сотен тысяч автомобилей, лишь некоторыми из которых управляют люди.
Система обучает автомобили на искусственном интеллекте следить за тем, что делает машина непосредственно перед ними и за ними. По словам ученых, Flow уже способен на многое: он может ускорить или замедлить скорость, а также изменить полосу движения. Опираясь на разные сигналы — например, стоит ли трафик или движется плавно, — система пытается оптимизировать дорожное движение. Команда проекта CIRCLES планирует провести несколько симуляций, чтобы убедиться, что значительная экономия энергии обусловлена использованием алгоритмов в автономных транспортных средствах. Затем исследователи будут запускать реальный эксперимент с людьми за рулем, реагирующими на команды системы в реальном времени.
Второй проект — DeepAir (Deep Learning and Satellite Imaginary to Estimate Air Quality Impact at Scale) — возглавляет Марта Гонсалес (Marta Gonzalez), опирающаяся на свое предыдущее исследование, в котором она использовала данные с мобильных телефонов, изучая маршруты, по которым люди перемещаются по городам, чтобы составить оптимальный план расположения зарядных устройств для электромобилей.
«Новизна проекта в том, что, хотя экологические модели, которые отображают взаимодействие загрязняющих веществ с погодой — такие как скорость ветра, давление, осадки и температура, —разрабатывались в течение многих лет, им все еще не достает многих частей, таких как выбрасываемые отходы от транспортных средств и электростанций», — говорит Гонсалес.
Исследователи ожидают, что новые данные позволят им получить информацию об источниках и распределении загрязняющих веществ, что в конечном итоге поможет разработать более эффективные и своевременные меры по предотвращению экологических катастроф.
Несмотря на то что идея использования алгоритмов для управления дорожным трафиком может показаться невероятной, ученые считают, что технологии уверенно движутся в этом направлении и через 10 лет это может стать обычным явлением.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Команда исследователей из Италии и США предложила два способа, с помощью которых гипотетический зонд сможет быстро добраться до одного из самых отдаленных и малоизученных объектов Солнечной системы. Речь о Седне — транснептуновом теле, которое находится за орбитой Плутона. По мнению инженеров, эти передовые технологии смогут доставить аппарат к Седне за семь и 10 лет.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии