28 октября
ФизТех
3

Углеродные нанотрубки приблизили создание плазмонного интерферометра на чипе

4.5

Ученые экспериментально показали, что с помощью одиночных углеродных нанотрубок можно различать закрученность терагерцового излучения. Продемонстрированный эффект может быть использован для разработки терагерцовых плазмонных интерферометров, детекторов и спектрометров на чипе. Такие приборы могут быть востребованы в различных отраслях: от медицины до телекоммуникаций.

Углеродные нанотрубки приблизили создание плазмонного интерферометра на чипе / ©Пресс-служба МФТИ

Работа опубликована в журнале американского оптического общества OSA Optics Express. Плазменные волны (плазмоны) — это коллективные возбуждения электронов в проводящих материалах либо на границе раздела диэлектрик / металл и в тонких пленках. Область науки и техники, которая занимается изучением плазменных волн и разработкой устройств на их основе, называется плазмоникой.

Главная идея плазмоники — в том, чтобы при помощи объектов, размер которых в сотни и тысячи раз меньше длины волны излучения, управлять энергией этого излучения — усиливать ее, преобразовывать, накапливать и передавать. На основе плазмонных эффектов можно создавать миниатюрные, но при этом энергоэффективные электронные устройства: источники и детекторы электромагнитного излучения, биосенсоры, волноводы, модуляторы и так далее.

Плазменные волны, подобно любым другим видам периодических возбуждений (например таким, как волны на воде или электромагнитные волны), способны интерферировать между собой. Явление интерференции широко применяется в различных областях науки от оптики до квантовой физики.

Если удается создать систему, в которой при помощи изменения какого-то параметра можно контролируемо настраивать интерференцию, то такая физическая система может использоваться для решения прикладных задач. Это связано с тем простым фактом, что по изменению интерференционной картины можно получить информацию об источнике, который ее породил. Подобная ситуация как раз исследуется в описанном эксперименте.

Ученые сделали образцы со следующей конфигурацией: отдельно лежащие углеродные нанотрубки присоединяли к металлической антенне специальной геометрии. Эта структура была положена на оксидированный кремний, и в результате получился полевой транзистор, каналом которого являются отдельные углеродные нанотрубки. Облучая такой образец терагерцовым лазером перпендикулярно поверхности кремния, можно получить сигнал постоянного фотонапряжения, возникающий между рукавами антенны.

а) Схема устройства (в поперечном разрезе); b) принципиальная схема эксперимента / ©Пресс-служба МФТИ

В формировании сигнала могут участвовать различные физические механизмы в зависимости от температуры, частоты и мощности излучения, структуры образца и других параметров. В рамках этой работы ученым удалось показать экспериментально и теоретически, что сигнал постоянного фотонапряжения, возникающий в описанном устройстве, несет в себе отпечаток интерференции двух плазменных волн, распространяющихся в углеродных нанотрубках навстречу друг другу. Наблюдение явления стало возможным благодаря особой геометрии антенны и использованию поляризованного по кругу лазерного излучения.

«Сигнал постоянного фотонапряжения сильно различался для право- и лево-поляризованного излучения. В зависимости от того, в каком направлении закручено излучение, плазменные волны интерферируют в нашем устройстве по-разному», — говорит Максим Москотин, один из соавторов исследования, младший научный сотрудник лаборатории наноуглеродных материалов МФТИ.

Примерно год назад эта же группа продемонстрировала аналогичный эффект в графене. «Мы решили проверить, будет ли работать этот эффект в углеродных нанотрубках, потому что теоретические оценки показали, что время релаксации электронного импульса в трубках в 10 раз больше, чем в графене, — соответственно, коллективные электронные возбуждения должны затухать в них медленнее», — комментирует Георгий Федоров, заместитель заведующего лабораторией наноуглеродных материалов МФТИ.

Авторам удалось не только продемонстрировать экспериментальный эффект, но и разработать теорию, которая этот эффект описывает. Главным выводом теории является тот факт, что вклад от интерференции плазменных волн будет присутствовать в сигнале постоянного фотоотклика на закрученное терагерцовое излучение независимо от размерности физической системы, в которой происходит интерференция, и спектра электронов в ней. Этот фундаментальный результат открывает широкое поле для дальнейших экспериментальных исследований и разработки прикладных устройств.

Терагерцовое излучение — это перспективный участок электромагнитного спектра, который активно исследуется в последние десятилетия. Характерная длина волны этого излучения делает его уникальным инструментом для неинвазивной медицинской диагностики, исследований космоса, систем безопасности и контроля на производствах.

Следует отдельно отметить, что развитие телекоммуникаций, которое требует все более высоких скоростей передачи данных, уже привело новый стандарт связи 5G практически в область терагерцовых частот. Видимо, следующий стандарт (6G) будет использовать терагерцовые либо субтерагерцовые частоты для передачи информации.

Экспериментальный образец был изготовлен сотрудниками лаборатории наноуглеродных материалов МФТИ на базе ЦКП МФТИ. Экспериментальная часть выполнена на базе университета Регенсбурга (Германия). Теоретическая модель, описывающая работу устройства, предложена физиками из ФТИ имени А. Ф. Иоффе. Работа выполнена при поддержке РФФИ, РНФ и Министерства образования и науки РФ.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Вчера, 15:56
Ольга Иванова

Исследователи из США объяснили, зачем нужна физическая активность в старости.

Вчера, 05:30
Мария Азарова

Ученые из США представили альтернативный молекулярный механизм образования меланоцитарного невуса, который согласуется как с экспериментальными, так и с клиническими наблюдениями.

Позавчера, 14:37
Николай Цыгикало

Запуск в космос всегда динамичен. Ревущий старт, огромный факел огня, затихающий гром в небе. Первая ступень отработала и отделилась, отработала следующая, эстафета ускорения закончилась достижением орбитальной скорости на нужной высоте. Пуск ракеты завершен, заняв всего восемь – десять минут. Но выведение на этом не заканчивается. В работу вступает особая, космическая ступень. Именно она поднимает орбиту на большую высоту, начинает межпланетное путешествие, и решает много других задач. О ее сложной работе и больших возможностях – в нашем материале.

25 ноября
НИУ ВШЭ

Мобильные ученые публикуются в индексируемых журналах в два раза чаще. К такому выводу пришли исследователи из НИУ ВШЭ.

26 ноября
Анастасия Михалева

За всю историю исследования в космосе побывали более 500 человек. В океан на глубину более 10 километров спускались всего трое. Мы до сих пор знаем о Мировом океане и его обитателях недопустимо мало.

25 ноября
Илья Ведмеденко

Российские инженеры спроектировали самолет для межконтинентальных полетов в стратосфере. Его можно назвать условным аналогом британского Skylon.

3 ноября
Ольга Иванова

Исследований на эту тему, как ни странно, мало, хотя предположений — великое множество. По мнению ученых из Венгрии, одна из причин такого поведения — высокая концентрация внимания на речи хозяина, а еще это означает, что собака слышит знакомое слово.

12 ноября
Мария Азарова

Кошки оказывались сбиты с толку, когда их человек, как им казалось, «телепортировался» в новое, неожиданное место. Однако они не реагировали таким же образом на чужих людей или других животных.

2 ноября
Мария Азарова

Авторы новой работы на примере Шотландии определили характеристики людей, умерших от Covid-19, хотя они были привиты, а также выявили основные предикторы смертности.

[miniorange_social_login]

Комментарии

3 Комментария

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: