Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Петербургские ученые создали нейросеть для определения уровня углерода в морской воде
Океанологи СПбГУ разработали нейросетевую модель, которая по параметрам состава воды оценивает концентрацию углекислого газа в водоеме. Алгоритм уже успешно протестирован на данных, полученных в Балтийском море.
Результаты исследования, полученные в рамках подготовки выпускной квалификационной работы магистрантки программы «Физическая океанография и биопродуктивность океанов и морей (ФОБОС)», опубликованы в научном журнале Oceanology.
Морские растения поглощают растворенный в воде углекислый газ в процессе фотосинтеза, а после отмирания способствуют его долгосрочному хранению в глубинных слоях океана. Это помогает снижать парниковый эффект, поскольку Мировой океан поглощает около 25% антропогенных выбросов диоксида углерода. Однако избыток углерода приводит к закислению водоемов, что разрушает кораллы и раковины, а разложение органики снижает уровень кислорода в придонных слоях, создавая «мёртвые зоны».
Балтийское море, будучи мелководным и замкнутым, особенно подвержено этим процессам. Обилие речного стока и слабый водообмен с океаном провоцируют бурное развитие — «цветение» — цианобактерий, которые усиливают поглощение углерода, но также ухудшают качество воды и расширяют области с дефицитом кислорода. Это угрожает экосистеме, делая её уязвимой к дальнейшим климатическим изменениям.
Для измерения углекислого газа в воде океанологи используют показатель парциального давления (pCO₂) — того давления, которое создавал бы газ, если бы он один занимал весь объём. В океанологии этот параметр показывает, насколько вода насыщена CO₂ по сравнению с атмосферой.
Специалисты Санкт-Петербургского университета проанализировали данные о параметрах среды, влияющих на концентрацию углекислого газа и построили модель для оценки парциального давления с использованием искусственного интеллекта. Для нейросети использовали показатели освещенности, температуры и солености водоема, а также глубину перемешанного слоя, взятые из открытой базы экспедиционных данных SOCAT, а также со спутников.
«Мы создали карты парциального давления для поверхностного слоя всего Балтийского моря, используя реальные измерения параметров воды. Такие карты позволяют точнее оценить параметр в районах с редкими замерами — например, у берегов заливов или в прибрежных зонах в осенне-зимний период. Наша модель дает реалистичные показатели, подтвержденные спутниковыми и модельными данными», — пояснила доцент кафедры океанологии СПбГУ, лектор российского общества «Знание» Полина Лобанова.
Как отметила выпускница Санкт-Петербургского университета Софья Кузьмина, машинное обучение использует два типа данных: тренировочные и тестовые. Первые учат модель определять, каким значениям pCO₂ соответствуют заданные параметры. Например, при понижении температуры воды парциальное давление может возрасти, поскольку растворимость газа увеличивается. Алгоритм запоминает эту зависимость и анализирует её в сочетании с другими факторами, чтобы эффективно использовать в дальнейшем.
Затем модель проверили на тестовой выборке, где она самостоятельно предсказала значения парициального давления на основе новых параметров. Учёные сравнили её расчёты с реальными экспедиционными данными, полученными в Балтийском море и подтвердили корректность системы.
«Мы применяем многослойный перцептрон — нейронную сеть, которая прогнозирует pCO₂, используя несколько скрытых уровней принятия решений. На каждом этапе учитывается вклад различных параметров, что позволяет избежать переобучения, обычно необходимого для таких моделей и получить объективную оценку», — добавила Софья Кузьмина.
В исследовании также описаны многолетние и сезонные колебания pCO₂ в Балтийском море, эти результаты согласуются с предыдущими работами, что подтверждает корректность модели.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии