Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые разработали новый терагерцевый фотодетектор из тонкой сверхпроводящей пленки
Международная команда исследователей с участием ученых из НИУ ВШЭ и МПГУ создала новый фотодетектор из тонкой сверхпроводящей пленки, который способен обнаруживать слабое излучение терагерцевого диапазона. Это важно для изучения космических объектов, создания беспроводных широкополосных систем связи, а также спектроскопии.
Исследование опубликовано в журнале Nano Letters. Сверхпроводящие болометры на горячих электронах (Superconducting Hot-Electron Bolometer) — тип чувствительных фотодетекторов, которые позволяют регистрировать слабое электромагнитное излучение терагерцевого диапазона.
Они используются в астрономии для изучения космических объектов, включая звезды, галактики и космическое микроволновое излучение, а также востребованы в системах безопасности и медицинской диагностики, так как позволяют визуализировать скрытые объекты с разрешением до сотен микрометров.
Когда светочувствительный элемент такого детектора поглощает электромагнитное излучение, его материал локально нагревается и образуются горячие электроны, кинетическая энергия которых выше средней кинетической энергии электронов в материале. Образование горячих электронов приводит к изменению сопротивления светочувствительного элемента, которое можно измерить как электрический сигнал.
Существующие коммерческие сверхпроводящие болометры с горячими электронами делаются на основе пленок, изготовленных методом магнетронного напыления. Технология не позволяет получить материал тоньше нескольких нанометров, а качество детектора напрямую зависит от качества напыления.
Международная команда исследователей при участии ученых из МИЭМ НИУ ВШЭ предложила использовать более тонкий материал и другой метод нанесения светочувствительного элемента фотодетектора. Следуя примеру нобелевских лауреатов Андрея Гейма и Константина Новоселова, которые получили графен с помощью обычной липкой ленты, авторы исследования получили сверхтонкие пленки диселенида ниобия, отрывая от куска материала атомные слои с помощью полимерного скотча.
«У нас была большая международная коллаборация специалистов по фотодетекторам и экспертов в области двумерных материалов. Мы объединили наши знания и опыт и создали чувствительный и компактный детектор терагерцевого излучения толщиной всего в несколько атомных слоев диселенида ниобия, что в 10 000 раз тоньше листа офисной бумаги, — комментирует Игорь Гайдученко, научный сотрудник МИЭМ НИУ ВШЭ. — При этом наша технология позволяет получать материалы с идеальной структурой. Она проста в применении и не требует специального оборудования».
Авторы исследования также изучили, как диселенид ниобия (NbSe2) реагирует на терагерцевое излучение. Исследователи смотрели, как нагревается материал, когда на него падает электромагнитная волна, и как меняются свойства детектора в зависимости от окружения — подложки и электродов, так как двумерные материалы чувствительны к тому, что их окружает. Также ученые определили механизмы, которые ограничивают чувствительность и быстродействие детектора.
Ученые подчеркивают, что это первая работа по созданию болометрического детектора терагерцевого излучения, которая показала, что в будущем такое устройство может стать лучше существующих коммерческих решений.
«Мы показали, что на основе предложенной технологии можно создать болометрический детектор терагерцевого излучения, близкий по характеристикам к существующим коммерческим аналогам», — комментирует Кирилл Шеин, аспирант и научный сотрудник МИЭМ НИУ ВШЭ. Работа выполнена при поддержке Российского научного фонда.
Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии