Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые предложили эффективный способ прогнозирования токсичности потенциальных лекарственных препаратов
Ученые из Сколтеха (CDISE, группа Максима Федорова) и Мюнхенского центра имени Гельмгольца по исследованию окружающей среды и здоровья (HMGU, группа Игоря Тетко) создали технологию улучшенного прогноза токсичности потенциальных лекарственных препаратов на основе использования алгоритмов многозадачного машинного обучения и анализа различных видов данных по токсичности. Этот подход позволяет получить точные прогнозы нежелательных эффектов лекарственных соединений. Результаты...
Ученые из Сколтеха (CDISE, группа Максима Федорова) и Мюнхенского центра имени Гельмгольца по исследованию окружающей среды и здоровья (HMGU, группа Игоря Тетко) создали технологию улучшенного прогноза токсичности потенциальных лекарственных препаратов на основе использования алгоритмов многозадачного машинного обучения и анализа различных видов данных по токсичности.
Этот подход позволяет получить точные прогнозы нежелательных эффектов лекарственных соединений. Результаты исследования опубликованы в журнале Journal of Chemical Information and Modeling.
Новое лекарство, выводимое на рынок, должно быть не только эффективным, но и безопасным. Тестам на безопасность посвящена первая фаза клинических испытаний любого нового лекарственного препарата.
По данным организации FDA (Food and Drug Administration), осуществляющей надзор за безопасностью продуктов питания и лекарств в США, около 30% потенциальных лекарств отсеиваются именно на этой стадии, когда фармацевтические компании и ученые уже вложили в них десятки миллионов долларов и тысячи рабочих часов.
Чтобы этого избежать, необходимо разрабатывать эффективные алгоритмы, которые помогут распознать токсичные соединения на самой ранней стадии разработки нового препарата.
Универсального понятия токсичности не существует. Этот параметр может быть измерен на различных организмах (например, на мышах, крысах, обезьянах); оценка токсичности также зависит от способа введения препарата (с пищей, инъекционно, накожно).
Авторы работы создали нейронную сеть, которая прогнозирует несколько различных видов токсичности одновременно.
Для обучения модели использовались данные о токсичности более 70 тысяч органических соединений различной природы; эти данные были распределены по 29 типам, учитывающим как вид испытуемого животного, так и тип введения исследуемого вещества.
Ученые сравнили свою модель с моделями, прогнозирующими только один тип токсичности и продемонстрировали, что одновременное использование многих видов токсичности при обучении значительно улучшает итоговое качество прогнозирования.
Для наблюдаемого явления можно найти простые аналогии. Одновременное изучение смежных дисциплин, например математики и физики, поможет ученику лучше понимать каждое из них и упростит процесс обучения.
Авторы полагают, что различные виды токсичности также связаны между собой — и это помогает нейронной сети выстраивать более точные закономерности.
«Далеко не всегда многозадачное обучение дает хороший результат, однако в нашем случае оно значительно улучшает качество прогнозирования. Наша работа не только демонстрирует эффективность нового подхода, но и способствует пересмотру устаревших методов вычислительного прогнозирования токсичности», — рассказывает первый автор опубликованной работы, аспирант Сколтеха Сергей Соснин.
Авторы работы сделали созданные модели доступными онлайн. Теперь любой химик-исследователь может заранее оценить токсичность потенциальных кандидатов в лекарственные средства по отношению к нескольким видам животных.
Машинное обучение и анализ больших данных уже совершили революцию во многих областях науки и теперь очередь за токсикологией.
В будущем ученые хотят научиться делать точные прогнозы токсичности для человека, что сделает процесс разработки новых лекарств дешевле и продуктивнее.
Кратероподобное образование в Северном море, у берегов Великобритании, уже несколько десятилетий не дает покоя научному сообществу. Идут горячие споры о происхождении структуры. Одни ученые полагают, что это результат импактного события. Другие списывают все на земные процессы. Точку в вопросе поставила международная команда геологов.
Столкновения кислород—кислород и неон—неон рассказали ученым больше о кварк-глюонной плазме и подтвердили несимметричную форму ядра неона.
Спешащие люди часто бывают менее любезны и дружелюбны с окружающими. Это подтвердило недавнее исследование польских ученых. Также они выяснили, что может устранить негативное действие суеты на человеческое поведение.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Столкновения кислород—кислород и неон—неон рассказали ученым больше о кварк-глюонной плазме и подтвердили несимметричную форму ядра неона.
Ученые обнаружили, что генетическая программа формирования пальцев у сухопутных животных могла возникнуть из маловероятного источника. Ключ к разгадке лежал в некодирующих областях генома.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии