Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Обнаружено новое фазовое состояние нанолокализованной воды
Сотрудники лаборатории терагерцовой спектроскопии МФТИ совместно с российскими и зарубежными коллегами открыли новое фазовое состояние нанолокализованной воды — воды, отдельные молекулы которой расположены в полостях кристаллической решетки кордиерита. При фундаментальной важности фактически первого надежного экспериментального наблюдения фазового перехода в коллективе молекул воды обнаруженное явление может найти и практическое применение — в области технологий сегнетоэлектриков, искусственных квантовых систем, а также в биосовместимой наноэлектронике.
Наряду с учеными МФТИ, в работе приняли участие сотрудники Института кристаллографии РАН, Института общей физики РАН, Сколтеха, Института геологии и минералогии СО РАН и Новосибирского государственного университета, а также коллеги из Германии, Чехии и Японии. Результаты исследования опубликованы в престижном научном журнале Nature Communications.
«Мы ищем новые фазы упорядочения электродипольных решеток, то есть набора “точечных” электрических диполей, — рассказал один из инициаторов работы, младший научный сотрудник лаборатории терагерцовой спектроскопии МФТИ Михаил Белянчиков. — Потому что различных фаз вещества с магнитными диполями найдено великое множество, а вот исследования фазовых состояний вещества, обусловленных упорядочением не магнитных, а электрических “точечных” диполей, еще только начинаются.
Кроме того, электродипольные решетки являются одним из типов сегнетоэлектриков, свойства которых могут оказаться крайне полезными при разработке новых приборов микроэлектроники». Однако создание решетки взаимодействующих между собой электрических диполей с целью ее экспериментального исследования — непростая задача.
Чаще всего физики применяют для этого так называемые оптические интерференционные ловушки. Они представляют собой периодическую структуру полей, возникающих в результате интерференции лазерного излучения. В узлы такой решетки помещают ультрахолодные атомы изучаемых веществ.
Но исследователи из лаборатории терагерцовой спектроскопии МФТИ нашли другой, более рациональный путь. Они поместили отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. Ее роль исполняет кристаллическая решетка цеолитов, содержащая периодически распределенные поры нанометрового размера.
В результате получается твердотельный образец (кристалл) с находящимися в этих порах практически свободными молекулами воды (так называемой нанолокализованной воды). Его очень удобно исследовать при различных (не только очень низких) температурах, включая комнатные, а также при различных внешних воздействиях (под влиянием электрических полей, давления и другого).
Впрочем, основной результат работы был получен как раз при низкой температуре 3 K (–270°C). Электродипольная решетка, исследованная в данной работе, была создана на основе одного из цеолитов — кристалла кордиерита. При температуре 3 K в трехмерной решетке нанолокализованных молекул воды ученые обнаружили все характерные признаки сегнетоэлектрического фазового перехода типа «порядок — беспорядок».

«Ранее мы исследовали аналогичную нанолокализованную воду в матрице берилла, кристалла, очень близкого по структуре к кристаллу кордиерита. Нам не удалось обнаружить упорядочения молекулярных диполей в данной системе вплоть до самой низкой достигнутой нами температуры 0,3 К. Причиной тому — высокая симметрия (гексагональная) решетки этого кристалла и квантово-механические явления, определяющие свойства молекул воды при столь низких температурах, — подчеркнул Михаил Белянчиков. — Ключевую же роль в возникновении фазового перехода в кристалле кордиерита сыграла его несколько менее высокая (орторомбическая) симметрия».
Для анализа и интерпретации экспериментальных результатов ученые взялись за компьютерное моделирование. Последнее заключалось в применении метода Монте-Карло и других математических инструментов для численного решения очень сложного многочастичного уравнения Шредингера, описывающего электродипольную систему нанолокализованных молекул воды.
Компьютерная модель дала возможность понять, как выглядит упорядоченная фаза на микроскопических, точнее, на наноразмерных масштабах. И вновь ученых ждал сюрприз: оказалось, эта фаза крайне необычна. Она представляет собой сосуществование сразу двух видов упорядочений дипольных моментов молекул воды — сегнетоэлектрического и антисегнетоэлектрического.
Это можно представить себе как стопку чередующихся листов сонаправленных диполей, где диполи в каждой паре соседних листов имеют разнонаправленную ориентацию (см. рисунок). Расчеты также показали, что картина упорядоченных водяных диполей (стрелки на рисунке) может быть еще более богатой. Это происходит, например, если молекулы воды заполняют не все поры кристалла, а только часть из них. В таком случае диполи-стрелки в плоскостях-листах группируются в отдельные области — домены.

«Наряду с важностью в фундаментальном отношении, исследование свойств нанолоколизованных молекул воды способствует пониманию явлений в окружающей нас среде и даже, возможно, поможет в конструировании приборов и устройств биосовместимой наноэлектроники. Эта бурно развивающаяся область обещает создание чрезвычайно эффективных электронных устройств на основе биологических материалов», — считает руководитель работы, заведующий лабораторией терагерцовой спектроскопии МФТИ Борис Горшунов.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.
Стали известны имена лауреатов Yandex ML Prize. Эту научно-образовательную премию основали в 2019 году для развития академического сообщества, а также поддержания мотивации исследователей и преподавателей к сфере искусственного интеллекта.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
