• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
26.10.2018, 17:45
ФизТех
328

Непроводящий висмут с сурьмой оказался топологическим сверхпроводником

❋ 3.9

Ученые обнаружили способность непроводящего висмута, легированного сурьмой, проводить сверхпроводящий ток внутри своего объема. Это повысит надежность квантовых систем.

Непроводящий висмут с сурьмой оказался топологическим сверхпроводником – иллюстрация к материалу на Naked Science
Непроводящий висмут с сурьмой оказался топологическим сверхпроводником / ©Пресс-служба МФТИ / Автор: Lampronia Auxilius

Группа исследователей из МФТИ, Университета Твенте и Амстердамского университета обнаружила способность одного из топологических материалов — непроводящего висмута, легированного сурьмой — проводить сверхпроводящий ток внутри своего объема. Топологические материалы — перспективные элементы будущих квантовых устройств благодаря защищенности своих проводящих свойств. Однако до сих пор не удавалось обнаружить такое поведение этих материалов не в поверхностном слое, а в объеме. Это значительно увеличит надежность квантовых устройств. Работа опубликована в Nature Materials.

Александр Голубов, заведующий лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ: «Полученный нами результат является, по мнению научного сообщества, первым шагом к реализации нового типа квантовых алгоритмов и должен ускорить проникновение топологических квантовых вычислений в технологии».

В последние годы область изучения топологических материалов стала очень актуальной. Так, в 2016 году Нобелевская премия по физике была дана Костерлицу, Таулесу и Холдейну за теоретические открытия топологических фазовых переходов и топологических фаз вещества.

Топологические изоляторы

Существует группа материалов, у которых в объеме — сложная структура энергетических зон. Благодаря этому на поверхности возникает проводящее состояние с жесткой зависимостью возможного направления движения электрона от направления его спина. Такие материалы называются топологически защищенными. Обычно электроны, двигаясь в каком-либо веществе, рассеиваются на примесях, поскольку не существует абсолютно чистых материалов. В случае топологически защищенных материалов такой процесс будет невозможен или, как говорят физики, запрещен, ведь, чтобы перевернуть направление движения, нужно будет перевернуть спин. А спин при отсутствии каких-то магнитных примесей или магнитных полей не будет переворачиваться.

Эта группа материалов называется также топологическими изоляторами. Изоляторами — потому что чаще всего в объеме эти материалы работают как изоляторы, они не проводят электрический ток. А на поверхности проводят. Топологическими — потому что именно их внутренняя топология делает поверхность проводящей.

«Это явление, наверное, более фундаментально, чем закон сохранения энергии и импульса. Потому что сохранение энергии в открытой системе работает с точностью до какого-то взаимодействия: поглотили фотон, у нас энергия изменилась. Импульс сохраняется опять же с точностью до рассеяния на примеси или на поверхности кристалла. Топологические изоляторы гораздо более устойчивы. Мы фактически отнимаем одну степень свободы у электронов. Можно менять электронную структуру внутри кристалла, но проводящее состояние на поверхности будет устойчивым, и его никак нельзя разрушить. Оно защищено и от рассеяния на примесях на поверхности», — поясняет соавтор работы, заведующий лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ, Александр Голубов.

Многообещающе выглядит применение таких материалов в квантовых вычислениях. В этой сфере есть одна проблема: квантовое состояние очень легко разрушить. Квантовая частица живет в неизменном состоянии до тех пор, пока не взаимодействует с окружением. Как только возникает взаимодействие с внешней средой, состояние квантовой частицы получает конечное время жизни. Топологическая защита квантовых состояний, по общему мнению, самая стабильная. Первые материалы с такими свойствами были получены несколько лет назад. Это полупроводники разного типа: висмут-селен, висмут-теллур и другие.

Эксперимент с дираковским полуметаллом

Новое слово в области создания топологически защищенных материалов — так называемые дираковские полуметаллы. Они характеризуются тем, что защищенные состояния могут быть даже в объеме вещества. Полуметаллами они называются, потому что занимают по электрическим свойствам промежуточное положение между металлами и полупроводниками.

Этот новый класс материалов еще более интересен для приложений, потому что поверхность подвержена любым химическим воздействиям: могут образоваться дефекты, которые все-таки нарушат эту топологическую защиту. В случае объемных топологически защищенных состояний разрушить их куда сложнее. Именно этот класс материалов на примере висмута, легированного сурьмой, изучался в рамках проделанного эксперимента. Было показано, что, действительно, топологическая защищенность присутствует в объеме пленки толщиной несколько сотен нанометров.

Непроводящий висмут с сурьмой оказался топологическим сверхпроводником
Розовая подложка — кристаллик висмут-сурьмы, голубые полоски — ниобий, который становится сверхпроводником при 264℃. На этом образце авторами изучался эффект Джозефсона. Для этого по электродам из ниобия пропускали сверхпроводящий электрический ток при температурах, близких к абсолютному нулю / Пресс-служба МФТИ

Ученые расположили на пленке из висмут-сурьмы контакты из сверхпроводящего ниобия. По сверхпроводящим электродам из ниобия в заданном направлении пропускался ток, который стимулировал движение электронов в висмут-сурьме от одного электрода к другому. Сверхпроводник позволил получить так называемый Джозефсоновский контакт. Эффект Джозефсона сводится к тому, что при разделении двух сверхпроводников каким-нибудь несверхпроводящим материалом через этот материал может течь сверхпроводящий бездиссипативный ток, который будет переноситься куперовскими парами электронов — носителями сверхпроводящего тока.

4π-периодичность тока

Все сверхпроводники характеризуются макроскопической фазой. Текущий через несверхпроводящий материал Джозефсоновский ток периодически зависит от разности фаз двух сверхпроводников. В квантовой механике все 2π-периодично, то есть любая волновая функция не меняется при изменении фазы на 2π. Текущий ток должен иметь синусоидальную зависимость от разности фаз.

«Эксперимент показал, что если барьером будет служить топологический изолятор, в котором степень свободы у электрона пропадает, ток будет 4π-периодичным, что интуитивно кажется невероятным», — рассказывает Александр Голубов.

Непроводящий висмут с сурьмой оказался топологическим сверхпроводником
Зависимость энергии Джозефсоновского контакта от разности фаз. Разные начальные уровни энергии соответствуют переносу заряда вправо либо влево / Пресс-служба МФТИ

«Направление тока фиксировано, значит, движение электронов возможно только в одну сторону. Система всегда стремится занять минимальный уровень энергии, поэтому естественным образом наша квантовая система занимает нижний энергетический уровень. В обычном случае электрон может двигаться вправо и влево, потому что оба направления спина разрешены. Но когда мы один спин убрали, то электронам ничего не остается, как двигаться в одну сторону. Получается кажущееся нарушение принципа квантовой механики, поскольку при изменении фазы на 2π-электрон проходит только полпути, а полный период будет 4π», — заключает Александр Голубов.

Обнаружение 4π-периодичности текущего через образец ток — прямое доказательство наличия топологической защищенности в объеме исследуемого материала.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
7 октября, 11:46
Игорь Байдов

Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.

7 октября, 14:50
Александр Березин

В 1970-х американские астронавты привезли с Луны сотни килограммов образцов, часть из которых поместили в инертный газ на хранение вплоть до появления новых геохимических методов исследования. Теперь ученые извлекли один из образцов и нашли в нем аномалию по изотопам серы, вызывающую вопросы о прошлом земного спутника.

8 октября, 12:51
Мария Азарова

Лауреатами Нобелевки по химии в этом году стали трое ученых из Японии, Австралии и Соединенных Штатов Америки.

4 октября, 14:06
Адель Романова

По общепринятой и незыблемой до сих пор версии, Уран и Нептун — ледяные гиганты: основную часть их массы составляют летучие вещества в особом состоянии «горячих льдов». Теперь у планетологов появилась альтернативная гипотеза: они подозревают, что никаких «горячих льдов» внутри них может не быть, а вместо этого есть крупные каменные ядра, окруженные легкой газовой оболочкой.

7 октября, 11:46
Игорь Байдов

Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.

7 октября, 10:57
ПНИПУ

По данным издания Gazeta.Ru, вопреки предрассудкам о студентах и подростках, наиболее активные потребители «быстрой» лапши — люди в возрасте 30–44 лет, представители трудоспособного возраста с высшим образованием. Согласно источникам World Instant Noodles Association (WINA), в год продается около 2,2 миллиарда порций, что делает Россию лидером по объему потребления в Европе и 12-й в мире. Из-за быстрого ритма жизни и простоты приготовления потребители закрывают глаза на их потенциальный вред. Ученые Пермского Политеха рассказали, почему такая пища представляет опасность даже без «химических» приправ, кому особенно стоит избегать встречи с этим продуктом и на что следует обращать внимание при изучении состава.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно