• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12 августа, 11:00
НИУ ВШЭ
1
443

Новая нейросеть предскажет кризисы на фондовом рынке России за 1-2 дня до начала

❋ 4.8

Экономисты из ВШЭ разработали нейросетевую модель, способную за сутки до события с точностью более 83% предупредить о приближении краткосрочного фондового кризиса. Модель работает даже на сложных, несбалансированных данных и учитывает не только экономические показатели, но и настроение инвесторов.

Экономисты НИУ ВШЭ предскажут кризисы на российском фондовом рынке с точностью 83% / © Anne Nygård, unsplash.com

Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина опубликована в журнале Socio-Economic Planning Sciences.

Как предсказать шторм на фондовом рынке? Знать ответ на этот вопрос хотят финансовые аналитики и инвесторы по всему миру. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина предлагает оригинальный подход к прогнозированию краткосрочных кризисов на отечественном рынке акций. Созданная ими гибридная модель глубокого обучения, сочетающая три архитектуры: Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) и Attention (механизм внимания инвесторов), — это первая попытка применить столь сложную структуру к российским биржевым данным.

Авторы проанализировали данные с 2014 по 2024 год, включающие рыночные и макроэкономические показатели (в первую очередь индекс Мосбиржи IMOEX), а также индикаторы настроений инвесторов. Чтобы спрогнозировать вероятность наступления кризиса на ближайшие 1–5 торговых дней, ученым пришлось решить несколько методологических проблем. Во-первых, кризисы на рынке происходят редко (до четверти всех событий), что делает обучающую выборку несбалансированной: есть риск, что модель научится игнорировать редкие сигналы.

Во-вторых, поведение инвесторов подчиняется не только объективным экономическим факторам, но и субъективным настроениям, которые трудно формализовать. В ответ на это исследователи разработали составные индексы внутреннего и внешнего инвестиционного настроения, используя метод главных компонент. Эти индексы дополняют традиционные макроэкономические и рыночные переменные, позволяя уловить скрытые эмоциональные сигналы участников торгов на более дальних временных горизонтах прогнозирования.

«Мы представили гибридную модель TCN — LSTM — Attention, сочетающую методы глубинного обучения и механизм внимания. Модель эффективно обрабатывает неравномерные данные и достигает точности 78,70% при прогнозе кризисных событий в день наблюдения и 78,85% на следующий торговый день. Использование месячной повторной тренировки и адаптивных временных окон позволило довести точность до 83,87%. Ключевыми факторами, влияющими на предсказания, оказались биржевые индикаторы (аналог технического анализа), капитализация компаний — эмитентов акций и рыночные курсы валют», — сообщила профессор факультета экономических наук ВШЭ Тамара Теплова. 

Разработанная система может стать важным инструментом в арсенале инвесторов, финансовых аналитиков и регуляторов. Она позволяет не просто ретроспективно анализировать кризисные периоды, но заранее и с высокой достоверностью выявлять угрозы на горизонте 1–2 дней. В сочетании с регулярной адаптацией к новым данным такая система может лечь в основу динамической архитектуры мониторинга рисков, адаптированной под специфику российского рынка.

«Работа имеет высокую практическую значимость для национального финансового сектора: она предлагает действенные инструменты для своевременного выявления рыночных потрясений, что особенно актуально для нестабильной макроэкономической среды», — подчеркивает Тамара Теплова.

Исследование выполнено при поддержке Программы фундаментальных исследований НИУ ВШЭ в рамках проекта «Центры превосходства».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
10 ноября, 12:19
Юлия Трепалина

Кофе — любимый напиток многих людей, но врачи традиционно советуют пациентам с мерцательной аритмией, или фибрилляцией предсердий, избегать кофеина, чтобы не спровоцировать симптомы этого распространенного нарушения сердечного ритма, способного привести к инсульту и преждевременной смерти. Однако результаты клинических испытаний, которые провела международная группа кардиологов, поставили эту рекомендацию под сомнение.

10 ноября, 11:40
ПНИПУ

С 9 по 20 ноября продлится период «ретроградного Меркурия». В народе считается, что явление приводит к сбоям в технике, недопониманию в общении и прочим жизненных неурядицам. Что стоит за популярным понятием, действительно ли планета может влиять на нашу повседневность, или это просто иллюзия, имеющая психологические корни — рассказали эксперты Пермского Политеха.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

9 ноября, 15:00
Анатолий Глянцев

Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».

7 ноября, 08:15
Юлия Трепалина

Испанские исследователи проанализировали популярные в соцсетях фото и видео с дикими животными, сгенерированные с помощью искусственного интеллекта. Специалисты пришли к выводу, что такого рода реалистичные, но фейковые материалы способны навредить как людям, так и животному миру, поскольку они вводят в заблуждение и подрывают усилия по сохранению дикой природы.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

[miniorange_social_login]

Комментарии

1 Комментарий
Возникают вопросы по исследованию (ссылка, к сожалению, с телефона не открывается, чтоб посмотреть текст статьи) : какая мера исользовалась под словом "точность"? Если accuracy - то на несбалансированных классах, это ни о чем. В современных моделях банковского коредитного скорринга 0.95 - это уже "маст хев". Если средневзвешенная, то лучше, наверное f1. Если событие редко - то тут нужна скорее "детекция аномалий", а это другие ml-модели. Если используется анализ новостных сообщений (потом модель на бустинге и временных рядах "стакается", "блендится" или "воутится" с текстовой), то не проще ли дообучить Бертоподобную нейросеть (от сберовской Росберты или Фриды до адаптированной под ru Квен) через LoRA или напрямую через промптинг на класификацию? Внутрь модели, под капот, правда, не залезть, то есть не интерпретировать, но результат на выходе по perception, recal, f1 и roc-auc может быть лучше. И еще большой вопрос к авторам текстового сообщения - а они его исслелователям показывали и авторам статьи?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно