• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12 августа, 11:00
НИУ ВШЭ
1
422

Новая нейросеть предскажет кризисы на фондовом рынке России за 1-2 дня до начала

❋ 4.8

Экономисты из ВШЭ разработали нейросетевую модель, способную за сутки до события с точностью более 83% предупредить о приближении краткосрочного фондового кризиса. Модель работает даже на сложных, несбалансированных данных и учитывает не только экономические показатели, но и настроение инвесторов.

Экономисты НИУ ВШЭ предскажут кризисы на российском фондовом рынке с точностью 83% / © Anne Nygård, unsplash.com

Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина опубликована в журнале Socio-Economic Planning Sciences.

Как предсказать шторм на фондовом рынке? Знать ответ на этот вопрос хотят финансовые аналитики и инвесторы по всему миру. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина предлагает оригинальный подход к прогнозированию краткосрочных кризисов на отечественном рынке акций. Созданная ими гибридная модель глубокого обучения, сочетающая три архитектуры: Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) и Attention (механизм внимания инвесторов), — это первая попытка применить столь сложную структуру к российским биржевым данным.

Авторы проанализировали данные с 2014 по 2024 год, включающие рыночные и макроэкономические показатели (в первую очередь индекс Мосбиржи IMOEX), а также индикаторы настроений инвесторов. Чтобы спрогнозировать вероятность наступления кризиса на ближайшие 1–5 торговых дней, ученым пришлось решить несколько методологических проблем. Во-первых, кризисы на рынке происходят редко (до четверти всех событий), что делает обучающую выборку несбалансированной: есть риск, что модель научится игнорировать редкие сигналы.

Во-вторых, поведение инвесторов подчиняется не только объективным экономическим факторам, но и субъективным настроениям, которые трудно формализовать. В ответ на это исследователи разработали составные индексы внутреннего и внешнего инвестиционного настроения, используя метод главных компонент. Эти индексы дополняют традиционные макроэкономические и рыночные переменные, позволяя уловить скрытые эмоциональные сигналы участников торгов на более дальних временных горизонтах прогнозирования.

«Мы представили гибридную модель TCN — LSTM — Attention, сочетающую методы глубинного обучения и механизм внимания. Модель эффективно обрабатывает неравномерные данные и достигает точности 78,70% при прогнозе кризисных событий в день наблюдения и 78,85% на следующий торговый день. Использование месячной повторной тренировки и адаптивных временных окон позволило довести точность до 83,87%. Ключевыми факторами, влияющими на предсказания, оказались биржевые индикаторы (аналог технического анализа), капитализация компаний — эмитентов акций и рыночные курсы валют», — сообщила профессор факультета экономических наук ВШЭ Тамара Теплова. 

Разработанная система может стать важным инструментом в арсенале инвесторов, финансовых аналитиков и регуляторов. Она позволяет не просто ретроспективно анализировать кризисные периоды, но заранее и с высокой достоверностью выявлять угрозы на горизонте 1–2 дней. В сочетании с регулярной адаптацией к новым данным такая система может лечь в основу динамической архитектуры мониторинга рисков, адаптированной под специфику российского рынка.

«Работа имеет высокую практическую значимость для национального финансового сектора: она предлагает действенные инструменты для своевременного выявления рыночных потрясений, что особенно актуально для нестабильной макроэкономической среды», — подчеркивает Тамара Теплова.

Исследование выполнено при поддержке Программы фундаментальных исследований НИУ ВШЭ в рамках проекта «Центры превосходства».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

22 сентября, 09:42
Игорь Байдов

Кратероподобное образование в Северном море, у берегов Великобритании, уже несколько десятилетий не дает покоя научному сообществу. Идут горячие споры о происхождении структуры. Одни ученые полагают, что это результат импактного события. Другие списывают все на земные процессы. Точку в вопросе поставила международная команда геологов.

22 сентября, 08:07
Адель Романова

Недавнее исследование показало, что заметки системы community notes под сомнительными постами на платформе X (бывший Twitter) действительно снижают распространение дезинформации и помогают предотвращать введение множества людей в заблуждение.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

21 сентября, 10:01
Evgenia Vavilova

Столкновения кислород—кислород и неон—неон рассказали ученым больше о кварк-глюонной плазме и подтвердили несимметричную форму ядра неона.

19 сентября, 10:42
Evgenia Vavilova

Ученые обнаружили, что генетическая программа формирования пальцев у сухопутных животных могла возникнуть из маловероятного источника. Ключ к разгадке лежал в некодирующих областях генома.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

[miniorange_social_login]

Комментарии

1 Комментарий
Возникают вопросы по исследованию (ссылка, к сожалению, с телефона не открывается, чтоб посмотреть текст статьи) : какая мера исользовалась под словом "точность"? Если accuracy - то на несбалансированных классах, это ни о чем. В современных моделях банковского коредитного скорринга 0.95 - это уже "маст хев". Если средневзвешенная, то лучше, наверное f1. Если событие редко - то тут нужна скорее "детекция аномалий", а это другие ml-модели. Если используется анализ новостных сообщений (потом модель на бустинге и временных рядах "стакается", "блендится" или "воутится" с текстовой), то не проще ли дообучить Бертоподобную нейросеть (от сберовской Росберты или Фриды до адаптированной под ru Квен) через LoRA или напрямую через промптинг на класификацию? Внутрь модели, под капот, правда, не залезть, то есть не интерпретировать, но результат на выходе по perception, recal, f1 и roc-auc может быть лучше. И еще большой вопрос к авторам текстового сообщения - а они его исслелователям показывали и авторам статьи?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно