Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Химики обучили программу строить точные модели межатомных сил
Ученые из МФТИ, НИИ автоматики и Сколтеха применили метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях.
Группа ученых из МФТИ, НИИ автоматики имени Н. Л. Духова и Сколтеха под руководством Артема Оганова применила метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях. Моделирование химических систем позволяет предсказывать их свойства в различных условиях до проведения экспериментов, что в дальнейшем дает возможность воплотить в реальность наиболее перспективные материалы. Результаты опубликованы в журнале Scientific Reports.
Компьютерная химия
Активное развитие науки за последние сто лет привело к наличию удивительного разнообразия органических и неорганических соединений, белковых и липидных структур, множества схем химических реакций. Но чем больше новых структур и молекул, тем больше времени требуется для того, чтобы исследовать их строение, биохимические и физические свойства, изучить модели поведения в различных условиях и возможные реакции взаимодействия с другими веществами. На данный момент изучать вышеперечисленные свойства возможно при помощи компьютерного моделирования.
Сейчас самый популярный метод моделирования основан на использовании набора параметров, описывающих рассматриваемую биохимическую систему: дли́ны связей в молекулах, углы между атомами, заряды и т. д. — так называемый «метод силовых полей». Однако использование этого метода не позволяет точно воспроизводить квантово-механические силы, которые действуют в молекулах. Кроме того, точные квантово-механические расчеты занимают много времени, не позволяют рассчитывать свойства больших систем и ограничиваются парой сотен атомов.
Огромный интерес представляют модели машинного обучения. Обучаясь на относительно небольшой выборке данных (получаемых в квантово-механических расчетах), эти модели затем могут быть использованы вместо квантово-механических расчетов, поскольку обладают такой же точностью, но требуют примерно в тысячу раз меньше вычислительных ресурсов, чем квантово-механические расчеты.
Успехи машинного обучения в моделировании атомных взаимодействий
Ученые применили машинное обучение для моделирования межатомных взаимодействий в кристаллах и расплавах двух элементов: алюминия и урана. Алюминий — хорошо изученный металл с известными физико-химическими свойствами. Уран был выбран, наоборот, из-за наличия разнящихся опубликованных данных о его физико-химических свойствах и желания исследователей эти свойства уточнить.
В ходе данной работы с помощью обученной модели исследователи изучали такие свойства, как плотность фононных состояний, энтропия и температура плавления алюминия.
Иван Круглов, сотрудник лаборатории компьютерного дизайна материалов МФТИ, рассказывает: «Величины сил межмолекулярных взаимодействий атомов в кристаллах можно успешно применять для предсказания поведения атомов этого элемента при других температурах и в других фазовых состояниях, а также, наоборот, — зная свойства системы в жидком фазовом состоянии, узнать поведение атомов в кристаллической решетке. Таким образом, появляется возможность расчета фазовой диаграммы урана на основании данных о его кристаллической структуре. Показывая состояние вещества в зависимости от давления и температуры, фазовые диаграммы позволяют определять возможности и границы применения элементов».
Основным критерием достоверности виртуально полученных данных являлось их сравнение с экспериментальной информацией. Использованный метод моделирования показал хорошую точность полученных виртуально данных. Информация, полученная методом машинного обучения, имеет меньшие погрешности, чем методы моделирования, использующие силовые поля.
Данное исследование заключается в повышении скорости и точности моделирования систем атомов методом машинного обучения, предложенным авторами в 2016 году.
Работа сделана при поддержке Российского научного фонда.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Периодически нейросети в своих ответах галлюцинируют, предлагая пользующимися их услугами людям выпить яд под видом лекарства и так далее. Новая научная работа показала, что эта проблема связана с самой природой нейросети. Хотя ее вероятность можно понизить, устранить полностью невозможно.
На юго-востоке Чехии археологи обнаружили не просто отдельные артефакты, а целый набор инструментов, который 30 тысяч лет назад носил с собой охотник-собиратель. Открытие дает представление о повседневной жизни этих людей, населявших территорию современной Центральной Европы.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии