Химики обучили программу строить точные модели межатомных сил

Ученые из МФТИ, НИИ автоматики и Сколтеха применили метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях.

1 192

Группа ученых из МФТИ, НИИ автоматики имени Н. Л. Духова и Сколтеха под руководством Артема Оганова применила метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях. Моделирование химических систем позволяет предсказывать их свойства в различных условиях до проведения экспериментов, что в дальнейшем дает возможность воплотить в реальность наиболее перспективные материалы. Результаты опубликованы в журнале Scientific Reports.


Компьютерная химия


Активное развитие науки за последние сто лет привело к наличию удивительного разнообразия органических и неорганических соединений, белковых и липидных структур, множества схем химических реакций. Но чем больше новых структур и молекул, тем больше времени требуется для того, чтобы исследовать их строение, биохимические и физические свойства, изучить модели поведения в различных условиях и возможные реакции взаимодействия с другими веществами. На данный момент изучать вышеперечисленные свойства возможно при помощи компьютерного моделирования.

 

Химики обучили программу строить точные модели межатомных силМежатомные силы

 

Сейчас самый популярный метод моделирования основан на использовании набора параметров, описывающих рассматриваемую биохимическую систему: дли́ны связей в молекулах, углы между атомами, заряды и т. д. — так называемый «метод силовых полей». Однако использование этого метода не позволяет точно воспроизводить квантово-механические силы, которые действуют в молекулах. Кроме того, точные квантово-механические расчеты занимают много времени, не позволяют рассчитывать свойства больших систем и ограничиваются парой сотен атомов.

 

Огромный интерес представляют модели машинного обучения. Обучаясь на относительно небольшой выборке данных (получаемых в квантово-механических расчетах), эти модели затем могут быть использованы вместо квантово-механических расчетов, поскольку обладают такой же точностью, но требуют примерно в тысячу раз меньше вычислительных ресурсов, чем квантово-механические расчеты.


Успехи машинного обучения в моделировании атомных взаимодействий


Ученые применили машинное обучение для моделирования межатомных взаимодействий в кристаллах и расплавах двух элементов: алюминия и урана. Алюминий хорошо изученный металл с известными физико-химическими свойствами. Уран был выбран, наоборот, из-за наличия разнящихся опубликованных данных о его физико-химических свойствах и желания исследователей эти свойства уточнить.

 

В ходе данной работы с помощью обученной модели исследователи изучали такие свойства, как плотность фононных состояний, энтропия и температура плавления алюминия.


Иван Круглов, сотрудник лаборатории компьютерного дизайна материалов МФТИ, рассказывает: «Величины сил межмолекулярных взаимодействий атомов в кристаллах можно успешно применять для предсказания поведения атомов этого элемента при других температурах и в других фазовых состояниях, а также, наоборот, — зная свойства системы в жидком фазовом состоянии, узнать поведение атомов в кристаллической решетке. Таким образом, появляется возможность расчета фазовой диаграммы урана на основании данных о его кристаллической структуре. Показывая состояние вещества в зависимости от давления и температуры, фазовые диаграммы позволяют определять возможности и границы применения элементов».


Основным критерием достоверности виртуально полученных данных являлось их сравнение с экспериментальной информацией. Использованный метод моделирования показал хорошую точность полученных виртуально данных. Информация, полученная методом машинного обучения, имеет меньшие погрешности, чем методы моделирования, использующие силовые поля.

 

Данное исследование заключается в повышении скорости и точности моделирования систем атомов методом машинного обучения, предложенным авторами в 2016 году.


Работа сделана при поддержке Российского научного фонда.

Физтех
46Статей
Московский физико-технический институт (МФТИ). Блог о последних научных открытиях ученых МФТИ и других российских вузов и исследовательских центров в различных областях науки, от астрофизики до генной инженерии.
1 192

Подпишись на нашу рассылку лучших статей и получи журнал бесплатно!


Комментарии
Аватар пользователя Konstantin Tereschenko
2 ч
Очень херово,надо сказать!
Аватар пользователя namelessclone
5 ч
странный выбор языков, однако. разница между...
Аватар пользователя Илья Ведмеденко
Сегодня
Они и не стали. В материале ясно говорится: лучшими из...

Колумнисты

Комментарии

Plain text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <iframe> <embed> <br/>
  • Строки и параграфы переносятся автоматически.

Comment text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <br/>

Быстрый вход

или зарегистрируйтесь, чтобы отправлять комментарии
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку