Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые узнали, как ускорить разработку безопасных аккумуляторов для электромобилей
Исследователи из Сколтеха и Института AIRI показали, как при помощи методов машинного обучения ускорить разработку новых материалов для твердотельных аккумуляторов. Нейросети оказались способны распознавать перспективные материалы для электролитов и защитных покрытий — ключевых элементов твердотельных аккумуляторов. По мере совершенствования эта технология может заменить литий-ионные аналоги в электромобилях и портативной электронике, что увеличит время автономной работы и снизит пожароопасность.
Исследование опубликовано в журнале npj Computational Materials и поддержано грантом РНФ.
Как и у литий-ионных аккумуляторов, у твердотельных есть положительный и отрицательный электроды, заряд между которыми переносится через электролит в процессе эксплуатации. Роль последнего в литий-ионных аккумуляторах выполняет проводящий ионы раствор. В твердотельных аккумуляторах электролит — это твердое вещество, проводящее ионы лития.
Твердотельные аккумуляторы пока не применяются в электромобилях, но автопроизводители соревнуются за первенство в их внедрении. Технология может увеличить запас хода примерно в полтора раза и значительно повысить пожаробезопасность. Одно из основных препятствий заключается в том, что ни один из существующих на сегодня твердых электролитов не удовлетворяет всем техническим требованиям. Поэтому поиск новых материалов продолжается.
«Мы показали, что с помощью графовых нейронных сетей можно выявлять новые материалы с высокой ионной проводимостью для твердотельных аккумуляторов следующего поколения. И делать это на порядки быстрее квантово-химических подходов — основного инструмента для теоретических предсказаний в материаловедении. Это значит, что разработка новых материалов для аккумуляторов может ускориться. Что мы и продемонстрировали, предсказав этими методами ряд защитных покрытий для твердотельных аккумуляторов», — рассказал первый автор работы, аспирант программы «Науки о материалах» и стажер-исследователь Центра энергетических технологий Сколтеха и младший научный сотрудник Института AIRI Артем Дембицкий.
Соавтор исследования, старший преподаватель Центра энергетических технологий Сколтеха Дмитрий Аксенов пояснил, зачем нужны защитные покрытия: «Металлический литий (анод) — очень сильный восстановитель, поэтому практически все существующие электролиты начинают восстанавливаться находясь с ним в контакте. А катодный материал — очень сильный окислитель. При окислении и восстановлении у электролитов разрушается структура, и это может привести либо к ухудшению рабочих характеристик аккумулятора, либо вовсе к короткому замыканию. Если добавить защитное покрытие, стабильное в контакте с катодом, анодом и электролитом, то этого можно избежать».
Алгоритмы машинного обучения позволяют ускорить расчеты ионной проводимости — ключевого свойства как для самого электролита, так и для его защитного покрытия. Вообще, скрининг материалов-кандидатов проходит поэтапно по целому ряду характеристик. В случае с материалом покрытия это — термодинамическая стабильность, электронная проводимость (должна быть низкой), электрохимическая стабильность, совместимость с электродами и электролитами, ионная проводимость и др. Причем расчет ионной проводимости является одним из наиболее ресурсоемких этапов. В начале отбора список кандидатов может включать десятки тысяч соединений-кандидатов, а в процессе отсева он сужается до нескольких лидеров.
Авторы работы выполнили поиск вариантов защитных покрытий для одного из наиболее перспективных электролитов твердотельных аккумуляторов — Li10GeP2S12. В результате ускоренного машинным обучением скрининга было выявлено несколько перспективных материалов защитного покрытия для этого электролита, например вещества с формулами Li3AlF6 и Li2ZnCl4.
Ученые впервые смогли создать видимый в оптическом диапазоне темпоральный кристалл. Для этого они использовали жидкие кристаллы.
Для разрыва связи между атомами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Исследование показало, что длина ресниц ассоциируется у людей не только со здоровьем и привлекательностью, но и воспринимается как сигнал с сексуальным подтекстом.
Для разрыва связи между атомами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Глубоководная жизнь нам, сухопутным, кажется инопланетной. В недавней экспедиции морские биологи погрузились на дно пятого по глубине Курило-Камчатского желоба. Они преодолели 9500 метров толщи воды и встретили удивительно богатые сообщества организмов, живущих благодаря хемосинтезу. Тысячи километров дна покрывает беспозвоночная жизнь, которая питается благодаря бактериям, окисляющим метан. Naked Science поговорил с одним из авторов исследования.
В данных космического телескопа «Джеймса Уэбба» ученые обнаружили объект, который может оказаться галактикой, сформировавшейся всего через 90 миллионов лет после Большого взрыва. Если открытие подтвердится, она станет абсолютным рекордсменом, побив рекорд предыдущего чемпиона почти на 200 миллионов лет. Однако исследователи осторожны — загадочный сигнал может иметь и другое, не менее интересное объяснение.
Недавнее появление в Солнечной системе межзвездного объекта 3I/ATLAS вызвало новую волну обсуждения вопроса о том, как отличить комету или астероид от внеземного космического корабля либо другого артефакта, не созданного человечеством. Астрономы рассказали, что у искусственного объекта могут быть четыре характерные особенности.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Глубоководная жизнь нам, сухопутным, кажется инопланетной. В недавней экспедиции морские биологи погрузились на дно пятого по глубине Курило-Камчатского желоба. Они преодолели 9500 метров толщи воды и встретили удивительно богатые сообщества организмов, живущих благодаря хемосинтезу. Тысячи километров дна покрывает беспозвоночная жизнь, которая питается благодаря бактериям, окисляющим метан. Naked Science поговорил с одним из авторов исследования.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии