Йод проявляет структуру мембранных белков — Naked Science
22.05.2017, 19:04
12 минут
ФизТех
64

Йод проявляет структуру мембранных белков

Структура таких белков позволяет на молекулярном уровне понимать зрение, обоняние, работу нервной и сердечно-сосудистой систем.

Йод проявляет структуру мембранных белков
Йод проявляет структуру мембранных белков

Исследование международного коллектива ученых, в который вошли и специалисты из МФТИ, показало, что давно известный метод «йодного фазирования» в структурной биологии оказывается неожиданно универсальным, если нужно определить структуру белка, живущего в клеточной мембране. Структура таких белков позволяет на молекулярном уровне понимать зрение, обоняние, работу нервной и сердечно-сосудистой систем.

Авторы работы, опубликованной в Science Advances, успешно применили известный метод йодного фазирования на четырех различных мембранных белках из разных классов, и обнаружили, что йод одинаково взаимодействует со всеми белками. Это дает гарантию на успех работы метода в случае новых структур и обеспечивает быстрое определение структур, важных для ускоренной и дешевой разработки лекарств компьютерными технологиями.

Мембранные белки — самые общительные биологические молекулы

Как известно, все живые организмы состоят из клеток. Все эти клетки, от кишечной палочки до человека, имеют общее строение. В частности, все клетки отделены от окружающего мира плотной клеточной мембраной, не пропускающей через себя большинство химических веществ. Такое уединение позволяет клетке поддерживать внутри себя постоянные условия, необходимые для отлаженной работы сложных биохимических механизмов. Однако, чтобы выжить, клетки должны внимательно наблюдать за изменениями внешней среды и своевременно реагировать на них. Для этого в геноме каждой клетки каждого организма закодированы сотни особых белков, встраивающихся в клеточную мембрану (и поэтому называющихся мембранными) и отвечающих за «общение» клетки с окружающим миром. Кроме того, такие белки могут переносить внутрь клетки химические вещества, которые не пропускает клеточная мембрана, но которые необходимы клетке для питания или проведения биохимических реакций.

Кристаллография помогает структурной биологии, но теряет фазы

Самый известный пример успеха структурной биологии — определение двухцепочечной структуры ДНК нобелевскими лауреатами Уотсоном и Криком в 1953 году. Элегантная модель, построенная ими, была разработана на основе структурных исследований их коллеги Розалинд Франклин. Двухцепочечная структура позволила объяснить процессы передачи генетической информации в клетках и заложила основу для современной биологии.

Кристаллография — основной метод структурной биологии. Она позволяет узнать структуру биологических молекул (чаще всего речь идет о белках) с точностью до атома. Такая точность позволяет не только увидеть основы работы белков, но и смоделировать их поведение, основываясь на законах физики.

Вся кристаллография построена на физическом явлении дифракции. Для измерения дифракционного сигнала на кристаллы белковых молекул светят рентгеновским излучением. При этом за счет того, что молекулы в кристалле хорошо упорядочены, сигнал многократно усиливается в определенных направлениях рассеяния, позволяя «засечь» его на фоне шума. Однако при этом во всех направлениях записывается лишь усредненный сигнал и теряются так называемые фазы. Они содержат информацию о том, насколько сигналы запаздывают друг относительно друга, и необходимы для определения структуры молекулы по данным дифракции. Потеря фаз немного похожа на то, как теряет свою ценность изображение при обесцвечивании: остается только «насыщенность» каждой отдельной точки, но детали о цвете теряются, не позволяя восстановить бóльшую часть информации.

<img src="http://old2.naked-science.ru/sites/default/files/images_custom/2017/05/1.png" alt="
Потеря информации при обесцвечивании изображения. Немного схожим образом теряется информация и в кристаллографии: при записи дифракционных данных остаются только интенсивности рассеянного рентгеновского света, а данные об их взаимосвязи пропадают бесследно.

В поисках утраченных фаз

На данный момент разнообразие решенных структур часто позволяет подбирать фазы компьютерными методами: сначала начальные фазы выбираются на основе какой-нибудь уже решенной структуры, а затем уточняются вручную. Однако этот подход часто не приводит к успеху. Особенно в случае данных низкого разрешения, типичных для мембранных белков, или абсолютно новых структур, не похожих ни на одну из предыдущих.

В таких случаях фазы находят экспериментально, используя так называемую аномальную дифракцию, — особую несимметричность дифракционных сигналов, испускаемых тяжелыми химическими элементами (йод, гадолиний, бром или даже сера). Для того, чтобы метод сработал, эти элементы должны сильно связываться с молекулами белка в кристалле, чтобы быть так же хорошо упорядоченными и давать сильный дифракционный сигнал. Часто подбор правильного элемента требует много времени и тратит много ценных белковых кристаллов.

Исследователи показали, что метод гарантированно сработает в случае взаимодействия мембранных белков и ионов йода в растворе. Это связано с характерной особенностью всех мембранных белков в природе. Они устроены так, что на границе «мембрана-раствор» все белки несут положительный заряд, который компенсирует отрицательно заряженную поверхность мембраны. Йод сильно взаимодействует с этими зарядами и «садится» на белок в совершенно определенных местах, гарантируя успех экспериментального поиска фаз.

Йод проявляет структуру мембранных белков
Место посадки йода в структурах разных белков. На A, B, C, D: слева — структура белка с отмеченными следами ионов йода (фиолетовым), справа — та же структура, встроенная в клеточную мембрану. Видно, что ионы йода (оранжевым) прикрепляются к белку на границе мембраны — именно там сконцентрирован выгодный для йода положительный заряд, нейтрализующий отрицательный заряд на поверхности мембраны

«В своей работе мы показали успешное решение структуры четырех уже известных белков из разных организмов: светочувствительной натриевой помпы из морской бактерии Krokinobacter eikastus, мембранного белка из кишечной палочки, аденозинового рецептора человека и протонной помпы из морской бактерии Marine Actinobacterial Clade. Все четыре структуры показали, что ионы йода действительно связываются с положительно заряженными аминокислотами в тех местах, где белок входит в мембрану. По сравнению с бромом, который иногда используют для решения фазовой проблемы, йод надежнее связывается с белком и гарантирует решение фазовой проблемы», — говорит Игорь Мельников, автор исследования, выпускник МФТИ и сотрудник Европейского центра синхротронной радиации.

СФУ
137 статей
Сибирский федеральный университет (СФУ) – крупнейший университет восточной части России. Состоит из 21 профильного института и 3 филиалов. Выполняет широкий спектр уникальных научных исследований в области биотехнологий, новых материалов, металлургии и горного дела, нанотехнологий, архитектуры и дизайна, космических и информационных технологий, математики, геномики, медицины и по многим другим направлениям. В университете действуют ведущие научные школы РФ, поддержанные грантами Президента РФ: «Дендроклиматический и дендроэкологический мониторинг лесов Северной Евразии» (руководитель – академик РАН Евгений Ваганов), «Экологическая биофизика» (руководитель – академик Иосиф Гительзон). А также научная школа профессора Августа Циха «Интегральные методы в комплексном анализе и алгебраической геометрии» и научная школа профессора Георгия Шайдурова «Радионавигационные и радиолокационные системы и устройства».
9 ноября
4 9 минут
Александр Березин

На Западе набирает обороты очередная инициатива по массовой посадке деревьев — TeamTrees. К ней присоединился даже Илон Маск, сменив свое имя в твиттере на Трилон Маск. Считается, что массовые посадки помогут в борьбе с глобальным потеплением. Как мы покажем ниже, на самом деле, все может быть ровно наоборот.

10 ноября
17 минут
Редакция

Кто-то еще со школы записался в технари: «были хорошие оценки по математике», другие безнадежно махнули на себя рукой: «гуманитарий». Да только не все так просто – чистых гуманитариев и технарей в природе очень мало: всего 1­­–2%, тем более что определиться с этим не так легко, как кажется. Не говоря уже о том, что есть другие категории, например естественники.

10 ноября
5 минут
Полина Гершберг

Подавление метаболизма глутамина истощает клетки опухолей и улучшает иммунный ответ.

5 ноября
19 минут
Александр Березин

Новое исследование подтвердило, что зонд «Вояджер-2» вышел из гелиосферы. Однако реальная новость вновь заслоняется выдуманной: часто пишут, будто «Вояджер-2» и «Водяжер-1» покинули Солнечную систему. Разберемся, почему это не так и что плохого в обмане длиной в 30 тысяч лет.

9 ноября
4 9 минут
Александр Березин

На Западе набирает обороты очередная инициатива по массовой посадке деревьев — TeamTrees. К ней присоединился даже Илон Маск, сменив свое имя в твиттере на Трилон Маск. Считается, что массовые посадки помогут в борьбе с глобальным потеплением. Как мы покажем ниже, на самом деле, все может быть ровно наоборот.

6 ноября
4 минуты
Никита Шевцов

Ученые со всего мира подписались под статьей, которая констатирует «климатическую катастрофу» на основе данных об изменении климата, собранных за 40 лет исследований.

17 октября
4 минуты
Илья Ведмеденко

Согласно представленным данным, вместо космического аппарата «Космос-2535» на орбите сейчас находятся пять объектов.

16 октября
3 минуты
Никита Шевцов

Биологи обнаружили вирус, который не может самостоятельно заражать клетки. Предполагается, что он пользуется помощью других вирусов.

16 октября
2 минуты
Илья Ведмеденко

Ученые сравнили состояние мозга женщин, имеющих детей, и тех, у кого их никогда не было. Выводы оказались более чем интересны.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: