• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
05.03.2024, 17:11
МИФИ
5
6 722

В НИЯУ МИФИ придумали, как заставить электрон излучать в сто раз больше энергии

❋ 4.8

Ученые НИЯУ МИФИ предложили новый тип решетки, взаимодействуя с которой электрон будет излучать в сто раз больше энергии, чем обычно.

В НИЯУ МИФИ придумали, как заставить электрон излучать в сто раз больше энергии
В НИЯУ МИФИ придумали, как заставить электрон излучать в сто раз больше энергии / © Getty images

Результаты исследования опубликованы в высокорейтинговом научном журнале Physical Review B. Если электрон или волна распространяется в свободном пространстве, то их энергия может изменяться непрерывно. В таком случае говорят, что состояние (электрона или волны) принадлежит континууму. Если энергия меняется дискретно, например, энергия волны в резонаторе или энергия электрона в атоме, то говорят, что реализуется связанное состояние.

Обычно области значений энергии из континуума и дискретного спектра не пересекаются. Однако в 1929 году фон Нейман и Вигнер показали, что в квантовой механике можно выбрать форму потенциала так, чтобы энергия связанных состояний лежала в области непрерывного спектра. Другими словами, связанные состояния находятся внутри запрещенной для них зоны. Такие состояния назвали «связанными состояниями в континууме» (ССК).

Идеальные ССК не затухают, не могут излучать или поглощать какие-либо волны и, вообще говоря, не могут наблюдаться. Однако неидеальные ССК – квази-ССК – наблюдаться могут. Такие состояния могут реализоваться в квантовой механике, в фотонике и плазмонике, включая физику излучений заряженных частиц. Квази-ССК фактически представляют собой резонансы, которые можно представить себе как очень узкие и очень высокие пики, и в таком качестве находят применение в самых современных исследованиях в области фотоники и плазмоники.

Одно из проявлений ССК – значительное усиление интенсивности излучения быстрых электронов за счет резонансов в излучающей структуре. В 2018 году группа ученых из Америки и Израиля теоретически исследовали излучение, которое возникает при взаимодействии электронов с решетками. Ученые показали, что проявление квази-ССК может быть настолько значительным, что электроны сравнительно медленные – нерелятивистские – будут излучать сильнее, чем релятивистские электроны, то есть электроны с высокой энергией, двигающиеся со скоростью, близкой к скорости света. Это необычно, так как принято считать, что чем выше энергия электрона, тем больше он излучает.

Сотрудники лаборатории «Излучение заряженных частиц» ИНТЭЛ НИЯУ МИФИ предложили новый тип решетки, взаимодействуя с которой электрон будет излучать в сто раз больше энергии, чем обычно. «Каждый элемент решетки – димер, то есть пара частиц, размер которых много меньше длины волны, на которой наблюдается излучение. Эффект усиления достигается на определенных частотах за счет резонансного взаимодействия между частицами димера. Это и есть проявление квази-ССК.

Частицы находятся близко друг к другу и влияют на излучательную способность друг друга. Мы рассчитали характеристики возникающего излучения, а также определили оптимальное расстояние, на котором должны находиться частицы, чтобы наблюдался резонанс на примере конкретной реализуемой структуры», — рассказала ведущий научный сотрудник Дарья Сергеева. По ее словам, для медных сферических частиц это расстояние составило 518 мкм. При таких параметрах на компактном электронном ускорителе с энергией электронного пучка 5-20 МэВ (наподобие тех, что повсеместно используются сегодня в медицинских центрах), можно будет наблюдать усиление излучения почти в 100 раз.

«Если аккуратно оптимизировать параметры решетки, то коэффициент усиления излучения может быть и выше. Однако, здесь есть какая-то загадка: расчеты, проведенные совершенно разными группами и в рамках разных подходов (нами — еще в 2008 году, американцами — в 2018, китайцами — в 2022, снова нами — в 2023 на уже другом типе решетки и усиления), при попытке оценить величину усиления численно сводятся к двум порядкам – то есть примерно в сотню раз! А почему именно в сто, чем на практике выделена эта цифра? Пока это совпадение остается загадкой», — отметила Дарья Сергеева.

В отличие от выполненных иностранными учеными качественных оценок и компьютерного моделирования, разработанная исследователями НИЯУ МИФИ аналитическая теория позволяет провести более аккуратное исследование вопроса о возможном максимальном усилении, сообщила она.

«Дело в том, что у нас есть теперь формулы, детально описывающие эффект усиления. Мы планируем продолжить это исследование в будущем, и впервые реализовать данный эффект усиления нового типа экспериментально. Успех в этих исследованиях откроет новые возможности для разработки новейших источников электромагнитного излучения на основе искусственных материалов (метаматериалов), состоящих из отдельных микрорезонаторов и элементов микро- и наноплазмоники, включая объекты с существенно квантовыми свойствами», — подчеркнула исследователь.

Потенциальная область применения полученных результатов очень широка. Это конструирование источников электромагнитного микроволнового излучения, включая малоисследованный, но очень перспективный субмиллиметровый диапазон спектра; разработка станций невозмущающей диагностики релятивистских электронных пучков на новейших источниках излучения четвертого поколения (лазеры на свободных электронах, синхротроны, коллайдеры); субмиллиметровая интроскопия в промышленных и коммерческих технологиях; применение в области электроники (датчики на-чипе), в биологических и медицинских исследованиях.

Исследования выполнены в рамках программы «Приоритет-2030», подпроект «Терагерцовая фотоника на основе метаматериалов и наноплазмоники» в рамках проекта ИНТЭЛ «Радиофотоника и квантовая сенсорика». Говоря о возможном прикладном значении новой разработки, Дарья Сергеева отметила: «Мы говорим про то, что наша решетка позволит повысить энергию излучения. Чем выше энергия, тем глубже может проникнуть излучение в вещество. Поэтому повышать энергию необходимо, если с помощью этого излучения предполагается просвечивать для разных целей (в медицине, биологии, интроскопии и промышленности, системах безопасности) большие объекты или объекты, которые находятся далеко».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский ядерный университет МИФИ - ведущий российский вуз, занимающийся подготовкой высококвалифицированных инженерных кадров для атомной отрасли, науки, IT-сферы, а также других высокотехнологичных секторов экономики России. Расположен в Москве, имеет 16 филиалов в разных регионах России, в Узбекистане и Казахстане
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
25 августа, 07:38
Адель Романова

В поиске сигналов от внеземных цивилизаций ученые решили сосредоточиться не на целенаправленных посланиях человечеству, а на случайных «утечках информации» из межпланетного пространства гипотетической обитаемой системы. По расчетам, в определенные моменты до нас могут доходить сигналы внеземной космической связи. Кстати, благодаря «общению» Земли с марсианскими и другими зондами мы тоже постоянно невольно сообщаем о себе в глубокий космос.

25 августа, 09:35
Любовь С.

Модель, представленная учеными из коллаборации DESI и Мичиганского университета (США), может перевернуть представления о происхождении темной энергии. Авторы нового исследования полагают, что черные дыры, поглощая вещество, постепенно преобразовывают его в энергию, гипотетически ответственную за расширение Вселенной.

25 августа, 13:36
Юлия Трепалина

Группа ученых из Индии с помощью дронов впервые задокументировала полный цикл брачного поведения горбатых дельфинов вида Sousa plumbea. Исследователи полагают, что наблюдения помогут в сохранении этих животных, обитающих в прибрежных водах Индийского океана и страдающих от деятельности человека.

22 августа, 10:48
ПНИПУ

К 2025 году около 30 стран приняли программы по развитию водородной энергетики, а совокупный объем инвестиций в эту область превысил 150 миллиардов долларов. Эксперты полагают, что замена дизельных авто на водородные снизит выбросы на 80-90%, а водородные самолеты способны уменьшить углеродный след на 50-75%. Но при использовании водорода в двигателях внутреннего или внешнего сгорания, происходит взаимодействие с металлом, что наиболее опасно при высоких температурах. Это может вызвать их разрушение, в результате чего возникает риск пожара или взрыва с тяжелыми последствиями для пассажиров. Ученые Пермского Политеха впервые выяснили, как водород влияет на металлы в условиях экстремальных температур (800 градусов и выше), в которых работают двигатели самолетов и машин. Это продвинет авиационную, машиностроительную и нефтегазовую отрасли в безопасном использовании водорода в качестве источника энергии.

22 августа, 14:45
Игорь Байдов

Ученые обнаружили косвенные доказательства существования мира размером с Землю за орбитой Нептуна. Эта гипотетическая планета отличается от предполагаемой Девятой планеты не только размером, но и гравитационным влиянием на другие объекты.

22 августа, 13:09
Юлия Трепалина

Большие кошки (Pantherinae) обычно охотятся на животных своего или меньшего размера. У снежных барсов, как выяснилось, другие предпочтения. Новое исследование показало, что ирбисы чаще нападают на взрослых горных козлов, которые как минимум вдвое превосходят хищников в весе. Ученые объяснили, с чем может быть связан такой выбор добычи.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

30 июля, 08:08
Редакция Naked Science

Возраст находок — около 5500 лет, они лежат во множестве круглых ям, чьи стены укреплены кирпичом. Среди обнаруженных орудий из кремня есть и сотни неиспользованных, которые могут быть ритуальным подношением богам.

31 июля, 08:28
Полина Меньшова

Гостингом (от английского «призрак») называют ситуацию, когда человек прекращает общение или отношения, «пропадая с радаров» без объяснения причин. Исследователи из США сымитировали такое поведение, а затем проанализировали реакцию людей на него.

[miniorange_social_login]

Комментарии

5 Комментариев
alexey al
06.03.2024
-
1
+
"энергия может изменяться непрерывно". Прошу провести работу над ошибками и больше не допускать такого бреда. уже более 100лет известно, что энергия изменяется посредством квантов, то есть, СТРОГО ДИСКРЕТНО! За это Эйнштейн, как бы, нобелевку получил. В школе этому учат. Непрерывным может быть ДИАПАЗОН ВОЗМОЖНЫХ ЗНАЧЕНИЙ (спектр) энергии частиц. А "за непрерывное изменение энергии ЧАСТИЦЫ" нужно лишать дипломов учебных заведений.
    -
    0
    +
    Алексей, Вы правы: точнее было сказать "энергия лежит в области непрерывного спектра", чем слова "энергия может изменяться непрерывно". Под «изменяться» понималось «быть» - а это не точно. Все-таки «изменяться» об энергии – это, например, когда энергия меняется в процессе излучения. А излучение уходит квантами (порциями), так что и терять частица энергию будет квантами, дискретно, в полном согласии с тем, что Вы и сказали. Интересно, что с ускорением дело не столь очевидно: при ускорении в, например, постоянном поле, частица поглощает энергию из поля. Поле-то квантуется, да – но кванты постоянного продольного поля виртуальные, то есть, на языке квантовой электродинамики, не лежат на массовой поверхности. Поле тогда разлагается в интеграл по непрерывному спектру, и, фактически, состоит из бесконечного набора квантов с совершенно разными, непрерывно меняющимися энергиями. Можно ли при этом сказать, что изменение энергии происходит квантами? Наверно да, почему ж нет. А вот если этих квантов с бесконечно малыми энергиями бесконечно много, могут они обеспечить сколь угодно гладкое изменение энергии? Казалось бы, да, почему нет. А только ли могут, или и обеспечивают? :) Но тут важно: надо не забывать, что если уж мы заговорили на языке квантового описания, то работает соотношение неопределенностей, которое говорит о некоторой неопределенности самой величины энергии, при условии, что ее измеряем за конечное время (что справедливо: а где б мы бесконечно долго могли измерять-то). А при неопределенности в величине энергии говорить о ее непрерывности или дискретности как, например, функции времени, нет смысла. продолжение ниже :)
    +
      ещё комментарии
      -
      0
      +
      продолжение Поэтому сказанное про энергию, что она может изменяться непрерывно, а) при классическом описании явлений точно нормально, и б) Вы правы, требует, или как минимум может потребовать указанного Вами исправления при квантовом рассмотрении; достаточно заменить «энергия может изменяться непрерывно» на «энергия может быть (лежать, попасть и т.п.) в области непрерывного спектра». И тут ключевую роль играет то, что описанный в заметке эффект - классический. А тогда квантовое описание – лишний наворот. Вот мы на машине едем, весом в полторы тонны – ну кому там важны квантовые эффекты в ее энергии или импульсе? Ключ достаем, дверь в подъезд открыть. Картошку чистим на ужин. Зачем тут квантовое описание? Описание на языке классической физики – не плохое. :) Просто у описания в рамках классической физики, как и у всего в физике, есть своя область применимости, при выходе за которую, конечно, надо учитывать и странные вещи, типа квантованности или релятивистских эффектов или там еще чего странного.)
-
0
+
Переносной МРТ ,что можно просвечивать дома,почву, что ещё?
    -
    1
    +
    Ну, не совсем МРТ, хотя и типа того в плане применений. МРТ основан на ядерном магнитном резонансе: надо сильное магнитное поле, а ускоритель с электронами не надо. А так да, и МРТ и источник типа описанного в заметке, могут использоваться с идеологией "просвети и узнай что внутри". Что еще можно просвечивать? Скажем, если излучение в терагерцовом диапазоне, то изделия из полимеров (а это пластмассы, резина, всякие волокнистые материалы и т.п.), картона, вообще почти все упаковочные материалы, а еще и новые материалы на основе керамики. Да, и дома. Почву - не очень здорово, там воды много, а она ТГц-лучи хорошо поглощает. А еще можно искать теть с поясами шахида в толпе - это если источник сделаешь достаточно интенсивным чтоб просвечивать толпу: тогда взрывчатка в этих поясах будет сиять на экранах. Или посылать сигналы в небо (беспилотникам, спутникам, незаметные или наоборот оглушающе-интенсивные, своим или чужим :). Это все стандартные применения ТГц-источников, но от фундаментальных теор.разработок до конкретных приборов - очень длинная дорога.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно