Хотите получать важные новости науки?
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
23.03.2023
Сколтех
862

Ученые визуализировали «форму» многомерных данных

4.6

Исследователи из Сколтеха и Института искусственного интеллекта AIRI представили метод визуализации, который в отличие от существующих аналогов делает сложные биомедицинские, финансовые и иные данные доступными человеку с сохранением многомерной структуры датасета. Потеря этой так называемой топологии датасета не позволяет делать полезные выводы из данных, будь то раковые гены, поведение потребителей или что-то еще.

«Расплющивание мамонта». Шесть методов снижения размерности данных превращают трехмерный скан скелета мамонта в плоское представление (в двух измерениях). Видно, что использованный коллективом из Сколтеха и AIRI метод (6), RTD-AE, справляется с сохранением исходной «формы» данных лучше, чем другие популярные методы, а именно: (1) t-SNE, (2) UMAP, (3) PaCMAP, (4) Autoencoder и (5) TopoAE / ©Илья Трофимов / Сколтех / Автор: Cloelia Andronicus

Исследование опубликовано в числе проектов, представленных на мероприятии уровня A* — Международной конференции по обучению представлений ICLR 2023. Аналитики компаний и ученые часто имеют дело с базами данных, в которых каждый элемент наделен признаками сразу во многих измерениях. Скажем, банк может использовать широкий круг показателей для описания поведения каждого клиента. Биологи могут сравнивать клетки разных типов с точки зрения того, насколько в них активен каждый из длинного списка генов. Данные по погоде тоже отличаются большим количеством измерений, потому что значения многих параметров фиксируются или предсказываются для множества моментов времени и точек пространства.

При этом людям непривычно мыслить в многомерном пространстве, и если не снизить размерность датасета и не получить его удобное двух- или трехмерное представление, то может быть крайне трудно обнаружить в данных важные закономерности или выдвинуть на основе них продуктивную гипотезу.

«Если данные визуализировать, то они станут интуитивно доступными, осязаемыми, но мы не обязательно увидим их реальную „форму“ — ведь у датасета может быть структура большого масштаба, с кластерами, пустотами, петлями, и хотелось бы, чтобы все это нашло отражение и в представлении пониженной размерности. Тогда физик увидит на визуализации сигналы отдельных частиц, маркетолог — разные группы потребителей, а климатолог — начало и конец интересующего его процесса. Наш метод снижения размерности отличается от аналогов как раз тем, что не жертвует глобальной структурой данных», — поясняет один из авторов исследования, выпускник Сколтеха и сотрудник AIRI Даниил Чернявский.

Существуют разные подходы к снижению размерности данных. Некоторые из них используют автоэнкодеры — нейросети, создающие представления данных в меньшем количестве измерений. «Проблема в том, что большинство методов, в том числе с автоэнкодерами, работают, что называется, локально. То есть учитывают положение каждой точки относительно ближайших соседей, но в целом игнорируют крупномасштабную структуру датасета, — добавляет Чернявский. — Мы же снабдили автоэнкодер дополнительной новой функцией лосса, которая служит тому, чтобы свести к минимуму различие в топологии между исходным датасетом и его представлением сниженной размерности. Когда лосс равен нулю, „форма“ визуализации гарантированно совпадает с исходной».

Ученые с использованием нескольких метрик оценили, насколько хорошо предложенный метод воспроизводит топологию датасета по сравнению с другими популярными методами снижения размерности данных. Для проверки использовались датасеты разного наполнения и метрики, которые отражают сохранение взаимного расположения точек в целом, а не только тех, что находятся в непосредственной близости друг от друга. Метод авторов исследования повторил исходную «форму» данных лучше всего (см. иллюстрацию).

«Топологический анализ обретает все большую популярность как инструмент исследования многомерных данных. Мы рассчитываем, что скоро предложенный нами и другие подобные методы станут признанным стандартом», — считает соавтор исследования профессор Евгений Бурнаев из Центра прикладного искусственного интеллекта Сколтеха и AIRI. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 10:24
Любовь Соковикова

Изучив распределение древних и плотных звездных систем в скоплении Персея, ученые наткнулись на уникальную галактику, которая практически полностью состоит из темной материи.

Вчера, 10:57
Александр Березин

Выбросы углекислого газа, которые возникнут при сжигании доказанных запасов ископаемого топлива всего 200 компаний, будут настолько велики, что для их компенсации нужны новые леса в десятки миллионов квадратных километров. По крайней мере, так считают авторы новой научной работы. Однако исследование их предшественников ставит эти выводы под серьезное сомнение.

Вчера, 07:43
Андрей Папиш

Богомолы единственные среди насекомых обладают стереоскопическим зрением, как у человека. Британские биологи провели эксперимент над богомолами, надев на них 3D-очки и подвесив вниз головой. Специалисты проверяли, как охотники отреагируют на стимулы с разной и одинаковой контрастностью. В итоге опыт стал иллюстрацией парадокса буриданова осла.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

Позавчера, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

18 июня
Александр Березин

Ученые проанализировали сохранившиеся следы языка гуннов и пришли к неожиданному выводу: он принадлежал к енисейской семье языков. По их мнению, потомками гуннов были аринцы, до XVIII века проживавшие в районе Красноярска и совершавшие набеги на русские опорные пункты.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно