• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.07.2023, 10:29
ТПУ
192

Ученые Томского политеха разработали нетоксичные наночастицы c магнитными свойствами для биомедицины

❋ 4.5

Ученые Исследовательской школы химических и биомедицинских технологий Томского политеха разработали новые магнитоэлектрические наноструктуры на основе биосовместимых материалов. Это позволяет использовать их в биомедицине, например, для изготовления на их основе композитных материалов для регенеративной медицины, биосенсоров, адресной доставки лекарств. Магнитные и магнитоэлектрические свойства дают возможность управлять соответственно перемещением и поверхностным зарядом наноструктур. Наночастицы могут быть легко модифицированы под конкретные задачи и, в отличие от зарубежных аналогов, не содержат токсичных материалов.

Ученые Томского политеха разработали нетоксичные наночастицы c магнитными свойствами для биомедицины
Ученые Томского политеха разработали нетоксичные наночастицы c магнитными свойствами для биомедицины / ©Getty images / Автор: Pinaria Caprarius

Проект реализуется в рамках мегагранта Минобрнауки России и национального проекта «Наука и университеты». Результаты работы ученых опубликованы в журнале Nano-Micro Small. Разработка наноразмерных структур представляет большой исследовательский интерес для мировой науки. Они имеют потенциал для использования их в качестве неинвазивных хирургических инструментов. Такие наноструктуры приводятся в движение внешним источником — магнитным полем или ультразвуком. В частности, обычные магнитные наночастицы не позволяют осуществлять контролируемое высвобождение лекарства.

Ученые Томского политехнического университета синтезировали новые наночастицы с магнитоэлектрическими свойствами для биомедицинских приложений. Ранее подобные наноразмерные структуры с магнитоэлектрическими свойствами разрабатывались в России только для приложений в электронике. Проект реализуется под руководством директора Международный научно-исследовательский центр «Пьезо- и магнитоэлектрические материалы» ИШХБМТ Андрея Холкина. Новые гетероструктуры синтезированы гидротермальным методом. Они созданы по типу «ядро-оболочка», что позволяет получить материал с магнитоэлектрическими свойствами. Для этого исследователи соединили два разных по кристаллической структуре и химическому составу материала.

«Ядро представляет собой магнитострикционный материал — феррит марганца, который во внешнем магнитном поле может растягиваться, сжиматься, скручиваться. Его покрывает оболочка из пьезоматериала — модифицированного титаната бария. Когда мы подаем механическое напряжение на ядро, то есть деформируем материал за счет магнитного поля, деформация переходит на пьезоболочку и возникает электрический потенциал. Под действием внешнего магнитного поля мы можем перераспределять этот поверхностный заряд, то есть менять поляризацию. Создаваемый магнитоэлектрический эффект приводит к высвобождению лекарства, которое содержится на поверхности наноструктуры, по требованию в условиях переменного магнитного поля за счет изменения поляризации», — рассказывает доцент Исследовательской школы химических и биомедицинских технологий Томского политеха Роман Чернозем.

При модифицировании титаната бария для создания оболочки ученые частично заменили в нем ионы бария ионами кальция, ионы титана — ионами циркония. Это позволило усилить пьезосвойства, что в разы повышает эффективность наноструктур. А замена феррита кобальта, применимого обычно при создании таких гетероструктур, на феррит марганца помогла избежать токсического эффекта. Кроме того, феррит марганца является рентгеноконтрастным веществом: при помощи томографа можно отслеживать его распределение и накопление в организме. Это обуславливает высокую биосовместимость наноразмерных структур. Они способны легко встраиваться в организм пациента и стимулировать реакции клеток и тканей, необходимые для достижения оптимального терапевтического эффекта.

«Многие процессы в организме управляются электрическими биосигналами, в том числе клеточные функции. Когда мы создаем электрический материал, способный обладать такими функциями управления, и используем электрические стимулы пьезоэлектрического эффекта, мы можем «запускать» необходимые химические и биохимические реакции. Например, стимулировать регенерацию костных и нервных тканей или создавать губительный эффект для раковых клеток.

Сейчас мы активно изучаем потенциал наноструктур для разработки на их основе нейростимуляторов для лечения болезней Паркинсона и Альцгеймера. Кроме того, они могут быть эффективны для очистки водоемов от органических загрязнителей. Заряженный материал в воде приводит к генерации активных форм кислорода, которые являются токсичными для органики – бактерий, вирусов, красителей», — отмечает профессор Исследовательской школы химических и биомедицинских технологий Роман Сурменев.

На данном этапе исследования ученые тестируют наноструктуры на биологических моделях и клеточных линиях. Это позволит подобрать оптимальные эксплуатационные параметры, такие как сила магнитного поля и время воздействия, для усиления положительного эффекта воздействия наночастиц и снижения негативного.  

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Томский политехнический университет — старейший технический вуз в азиатской части России и один из лучших инженерных университетов страны. Входит в топ-10 национальных, топ-100 международных предметных рейтингов и участвует в программе «Приоритет 2030». ТПУ — признанный научный и образовательный центр мирового уровня в области атомной и водородной энергетики, добычи и транспорта нефти и газа, IT, неразрушающего контроля, энергетики и электротехники, электроники, нанотехнологий, биотехнологий. В нашей колонке рассказываем о последних результатах работы ученых Томского политеха. О самом главном — просто и интересно.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

17 февраля, 15:30
МГППУ

Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.

17 февраля, 09:30
СПбГУ

Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

12 февраля, 11:41
Александр Березин

На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.

12 февраля, 08:19
Полина Меньшова

«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно