Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейронные языковые модели расширили освоение человеческой речи
Исследователи Сколтеха и их коллеги провели первое в своем роде масштабное вычислительное исследование, в ходе которого сравнили самые современные языковые модели на основе нейронных сетей и оценили их возможности по решению одной из важнейших задач обработки естественного языка – лексической замены.
Результаты исследования были представлены на 28-й Международной конференции по компьютерной лингвистике (COLING-2020). Лексическая замена – это замена слова в предложении на другое слово, которое тем или иным образом связано с исходным словом и подходит для употребления в данном контексте. Например, в предложении «Пётр Ильич Чайковский – великий русский композитор» слово «великий» можно заменить синонимом «выдающийся».
В предложении «Мой брат − профессиональный теннисист» слово «теннисист» можно заменить на гипероним (то есть слово с более широким значением) «спортсмен», а вместо фразы «Я сегодня на машине» автомобилист вполне может сказать: «Я сегодня на колесах» (слово «колесо» является меронимом, то есть понятием, обозначающим составную часть целого предмета).
Для человека как носителя языка лексическая замена – вещь вполне простая и естественная, чего нельзя сказать о компьютере, решающем задачи обработки естественного языка (NLP). Компьютеру приходится «овладевать навыками» индукции, чтобы научиться определять значение слова по контексту, исправлять орфографические ошибки в зависимости от смысла слова и даже решать более сложные задачи, например, перефразирование или упрощение текста.
Именно для решения таких задач и создаются языковые модели на основе глубоких нейронных сетей, способные выполнять лексическую замену в зависимости от ближайшего контекста целевого слова. Старший преподаватель Сколтеха Александр Панченко и его коллеги из Исследовательского центра Samsung в России, НИУ ВШЭ и МГУ имени М. В. Ломоносова сравнили пять языковых моделей на основе нейронных сетей, поставив перед ними две задачи − собственно лексическая замена и индукция значения слова (во втором случае компьютер должен был уловить разницу между омонимами, например, словом «среда» в значении «окружающая среда» или «день недели»).
По мнению ученых, полученные результаты могут оказаться полезными при решении чисто практических задач NLP. В частности, исследователи показали связь между конкретной моделью и типом семантических отношений между словами (синоним, омоним, гипероним и так далее), а также установили, что наличие дополнительной информации о целевом слове позволяет значительно (или существенно, если продолжать тему синонимов) улучшить качество лексической замены.
«Во-первых, результаты нашего исследования по лексической замене можно применять для целей изучения языка (замена слов на более простые). Во-вторых, их можно использовать для аугментации текстовых данных при обучении нейронных сетей. Аналогичные методы аугментации уже широко используются в компьютерном зрении, а вот в анализе текста они пока применяются не так часто. Также вполне реально использовать их при написании текстов в качестве вспомогательного средства для автоматического подбора синонимов и перефразирования текста», − отмечает Александр Панченко.
Приблизительно 4,5 тысячи лет назад в Британии произошла быстрая и масштабная смена населения. Неолитические народы, построившие Стоунхендж и большинство других памятников, практически исчезли, их заменили представители другой культуры. Долгое время археологи спорили, откуда пришли новые люди, которым так быстро удалось покорить остров. Ответ нашла международная команда генетиков.
Удивить разработками космической техники сегодня трудно. И все же есть новшества для орбитальных полетов, выделяющиеся своим необычным замыслом. Может ли работать на орбите воздушный реактивный двигатель? Причем работать неограниченно долго, да еще не требуя топлива. Конечно, нет, скажете вы. Тем не менее такое возможно. Мы расскажем подробнее о самых необычных двигателях для самых перспективных космических орбит.
Ученые впервые показали, как происхождение магических ядер можно вывести напрямую из взаимодействий протонов и нейтронов.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.
На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
